Образование планет кратко. Образование планет. Межзвездное облако сжимается

Ещё в XVI в. Джордано Бруно предположил, что звезды, подобно Солнцу, окружены свитой планет и эти миры непрерывно рождаются, развиваются и умирают. Два века спустя в работах немецкого философа Иммануила Канта и французского математика Пьера Симона Лапласа зародилась космогония — наука о происхождении небесных тел. Существует космогония планетная — она изучает проблемы возникновения Земли и планет вообще. С ней тесно связана космогония: звёздная, рассматривающая происхождение звёзд, и прежде всего Солнца — ближайшей к нам звезды.

Движение планет в Солнечной системе упорядочено: они вращаются вокруг Солнца в одном направлении и почти в одной плоскости. Расстояния от одной планеты до другой возрастают закономерно. Орбиты планет близки к окружностям, что и позволяет им вращаться вокруг Солнца миллиарды лет, не сталкиваясь друг с другом. Если движение планет подчиняется одному и тому же порядку, то процесс их образования должен быть единым. Это показали в XVIII в. Иммануил Кант и Пьер Лаплас. Они пришли к выводу, что на месте планет вокруг Солнца первоначально вращалась туманность из газа и пыли. Но откуда взялась эта туманность? И каким образом газ и пыль превратились в крупные планетные тела? Эти вопросы оставались нерешёнными в космогонии XIX и начала ХХ в. Камнем преткновения была и проблема момента количества движения планет. Масса всех планет системы в 750 раз меньше массы Солнца. При этом на долю Солнца приходится лишь 2% общего момента количества движения, а остальные 98% заключены в орбитальном вращении планет. Вплотную этими проблемами нaука занялась лишь во второй половине ХХ в. Почти до конца 80-х гг. раннюю историю нашей планетной системы приходилось «воссоздавать» лишь на основе данных о ней самой. И только к 90-м гг. стали доступны для наблюдений невидимые ранее объекты — газопылевые диски, вращающиеся вокруг некоторых молодых звёзд, сходных с Солнцем.

Газопылевую туманность, в которой возникли планеты, их спутники, мелкие твёрдые тела — метеороиды, астероиды и кометы, называют протопланетным (или допланетным) облаком. Плaнeты вращаются вокруг Солнца почти в одной плоскости, а значит и само газопылевое облако имело уплощенную чечевицеобразную форму, поэтому его называют ещё диском. Учёные полагают, что и Солнце, и диск образовались из одной и той же вращающейся массы межзвёздного газа — протосолнечной туманности.

Начальная фаза пpoтосолнечной туманности — предмет исследования астрофизики и звёздной космогонии. Изучение же её эволюции, приведшей к появлению планет, — центральная задача космогонии планетной. Возраст Солнца насчитывает чуть меньше 5 млрд лет. Возраст древнейших метеоритов почти такой же: 4,5-4,6 млрд лет. Столь же стары и рано затвердевшие части лунной коры. Пoэтому принято считать, что 3емля и другие планеты сформировались 4,6 млрд лет назад. Солнце относится к звёздам так называемого второго поколения Галактики. Самые старые её звёзды значительно (на 8-10 млрд лет) старше Солнечной системы. В Галактике есть и молодые звезды, которым всего 100 тыс. — 100 млн лет (для звезды это совсем юный возраст). многие Из них похожи на Солнце, и по ним можно судить о начальном состоянии нашей системы. Наблюдая несколько десятков подобных объектов, ученые пришли к следующим выводам.

Размер допланетного облака Coлнечной системы должен был превышать радиус орбиты последней планеты — Плутона. химический состав молодого Солнца и окружавшего его газопылевого облака-диска, по-видимому, был одинаков. Общее содержание водорода и гелия достигало в нем 98%. На долю всех остальных, более тяжелых элементов приходилось лишь 2%; среди них преобладали летучие соединения, включающие углерод, азот и кислород: метан, аммиак, вода, углекислота. Расчеты показывают, что в пределах орбиты Плутона, т.е. диска радиусом 40 а.е., общая масса всех планет вместе с утерянными к настоящему времени летучими веществами должна быть составлять 3-5% от массы Солнца. Такую модель облака называют облаком умеренно малой массы, она подтверждается и наблюдениями околозвездных дисков.

Если бы масса облака была сопоставима с массой центрального тела, то должна была бы образоваться звезда — компаньон Солнца (или же надо найти объяснение выбросу огромных излишков вещества из Солнечной системы). Наименее изучена самая ранняя стадия — выделение протосолнечной туманности из гигантского родительского молекулярного облака, принадлежащего Галактике.

Образование допланетных тел

В 40-х гг. академик Отто Юльевич Шмидт выдвинул ставшую общепринятой гипотезу об образовании Земли и других планет из холодных твердых допланетных тел — планетезималей . Распространенная ранее точка зрения, что планеты — это небольшие остатки некогда раскаленных гигантских газовых сгустков солнечного состава, потерявших летучие вещества, пришла в противоречие с науками о Земле. Земля, как показывают исследования, никогда не проходила через огненно-жидкое, т.е. полностью расплавленное состояние. Исследуя шаг за шагом эволюцию допланетного диска, ученые получили последовательность основных этапов развития газопылевого диска, окружавшего Солнце, в систему планет.

Первоначальный размер облака превышал современный размер планетной системы, а его состав соответствовал тому, который наблюдается в межзвездных туманностях: 99% газов и 1% пылевых частиц размерами от долей микрона до сотен микрометров. Во время коллапса, т.е. падения газа с пылью на центральное ядро (будущее Солнце), вещество сильно разогревалось, и межзвездная пыль могла частично или полностью испариться. Таким образом, на первой стадии облако состояло почти целиком из газа, притом хорошо перемешанного благодаря высокой турбулентности — разнонаправленному, хаотичному движению частиц. По мере формирования диска турбулентность стихает. Это занимает немного времени — около 1000 лет. При этом газ охлаждается и в нем вновь образуются твердые пылевые частицы. Таков первый этап эволюции диска.

Для остывающего допланетного облака характерно очень низкое давление — менее десятитысячной доли атмосферы. При таком давлении вещество из газа конденсируется непосредственно в твердые частички, минуя жидкую фазу. Первыми конденсируются самые тугоплавкие соединения кальция, магния, алюминия и титана, затем магниевые силикаты, железо никель. После этого в газовой среде остаются лишь сера, свободный кислород, азот, водород, все инертные газы и некоторые летучие элементы. В процессе конденсации становятся активными пары воды, окисляющие железо и образующие гидратированные соединения. Основные же космические элементы — водород и гелий — остаются в газообразной форме. Для их конденсации потребовались бы температуры, близкие к абсолютному нулю, ни при каких условиях недостижимые в облаке. Химический состав пылинок в допланетном диске определялся температурой, которая падала по мере удаления от Солнца. К сожалению, рассчитать изменение температуры в допланетном облаке очень трудно. Химический состав планет земной группы показывает, что они состоят в основном из веществ, конденсировавшихся при высоких температурах. В составе ближней части пояса астероидов преобладают каменистые тела. По мере удаления от Солнца в поясе астероидов увеличивается число тел, которые содержат обогащенные водой минералы и некоторые летучие вещества. Их удалось обнаружить в метеоритах, являющихся осколками астероидов. Среди малых планет, по-видимому, нет или очень немного ледяных тел. Следовательно, граница конденсации водяного льда должна быть проходить за ними, не ближе внешнего края пояса астероидов — в три с лишним раза дальше от Солнца, чем Земля.

В то же время крупнейшие спутники Юпитера — Ганимед и Каллисто — наполовину состоят из воды. Они находятся на гораздо большем расстоянии от Солнца, чем пояс астероидов. Значит, водяной лед конденсировался во всей зоне образования Юпитера. Начиная с орбиты Юпитера и дальше в допланетном облаке должны были преобладать ледяные пылинки с вкраплениями более тугоплавких веществ. В области внешних планет, при еще более низкой температуре, в составе пылинок оказались льды метана, аммиака, твердая углекислота и другие замерзшие летучие соединения. Подобный состав в настоящее время имеют кометные ядра, залетающие в окрестности Земли с далекой периферии Солнечной системы. Первые конденсаты — пылинки, льдинки — сразу после своего появления начинали двигаться сквозь газ к центральной плоскости облака. Чем крупнее были частицы, тем быстрее они оседали, так как при своем движении более крупные частицы встречают меньшее сопротивление газа на единицу массы.

На втором этапе завершалось образование тонкого пылевого слоя — пылевого субдиска — в центральной плоскости облака. Расслоение облака сопровождалось увеличением размеров частиц до нескольких сантиметров. Сталкиваясь друг с другом, частицы слипались, при этом скорость их движения к центральной плоскости увеличивалась и рост тоже ускорялся. В некоторый момент плотность пыли в субдиске приблизилась к критическому значению, превысив плотность газа уже в десятки раз. При достижении критической плотности пылевой слой делается гравитационно неустойчивым. Даже очень слабые уплотнения, случайно возникающие в нем, не рассеиваются, а наоборот, со временем сгущаются. Сначала в нем могла образоваться система колец, которые, уплотняясь, также теряли свою устойчивость и на третьем этапе эволюции диска распадались на множество отдельных мелких сгустков.

Из-за вращения, унаследованного от вращающегося диска, эти сгустки не могут сразу сжаться до плотности твердых тел. Но, сталкиваясь друг с другом, они объединяются и все более уплотняются. На четвертом этапе образуется рой допланетных тел размером около километра; первоначальное число их достигает многих миллионов. Описанный путь образования тел возможен, если пылевой субдиск очень плоский: его толщина должна быть во много раз меньше диаметра. Такие объекты существуют и ныне, например кольца Сатурна. Другой путь формирования допланетных тел помимо гравитационной конденсации — это их прямой рост при столкновениях мелких частиц. Они могут слипаться лишь при небольших скоростях соударений, при достаточно разрыхленной поверхности контакта или в случае повышенной силы сцепления. Такие тела, каким бы из двух путей они ни возникли, послужили строительным материалом для формирования планет, спутников и метеорных тел.

Ученые предполагают, что допланетные тела, образовавшиеся на периферии облака при очень низкой температуре, сохранились до сих пор в кометном облаке, куда они были заброшены гравитационными возмущениями планет-гигантов.

Аккумуляция планет

Образование допланетных тел в газопылевом облаке продолжалось десятки тысяч лет — крайне незначительный срок в космогонической шкале времени. Дальнейшее объединение тел в планеты — аккумуляция планет — гораздо более длительный процесс, занявший сотни миллионов лет. Детально восстановить его очень трудно: последующая геологическая стадия, длящаяся уже более 4 млрд лет, к настоящему времени стерла особенности начального состояния планет. Допланетный рой представлял собой сложную систему большого числа тел. Они обладали неодинаковыми массами и двигались с разными скоростями. Помимо общей для всех тел на данном расстоянии от Солнца скорости обращения по орбите эти тела имели дополнительные индивидуальные скорости со случайно распределенными направлениями. В допланетном облаке самыми многочисленными всегда были мелкие частицы и тела. Меньшую долю составляли тела промежуточных размеров. Крупных тел, сравнимых с Луной или Марсом, было совсем мало.

Эволюция облака вела к тому, что именно в немногих крупных телах сосредотачивались основная масса всего планетарного вещества. Эта иерархия сохранилась и до наших дней: совокупная масса планет намного выше общей массы всех малых тел — спутников, астероидов, комет и пылевых частиц. Крупные тела своим гравитационным влиянием постепенно увеличивают хаотические скорости планетезималей. Каждое сближение двух тел меняет характер их движения по околосолнечным орбитам. Таким образом, в течение этого периода идет «раскачка» системы от очень плоского диска к более утолщенному. При этом тела приобретают тем большие хаотические скорости, чем меньше их масса, и наоборот. Растут тела очень неравномерно. Самое крупное из них в любой кольцевой зоне, где орбиты остальных тел пересекаются с его орбитой, получает привилегированное положение и в перспективе может стать зародышем планеты.

Роль соударений можно пояснить на примере современного пояса астероидов, где последствия ударов неодинаковы для разных тел. В нынешнее время хаотические скорости астероидов составляют примерно 5 км/с, с такими же скоростями они сталкиваются с мелкими телами. Энергия удара при падении тела на поверхность астероида обычно так велика, что разрушается не только само упавшее тело, но и часть астероида. Образуется ударный кратер, выбросы из которого разлетаются со скоростями сотни метров в секунду. Разлетающееся вещество вновь падает на поверхность астероида только в том случае, если он обладает достаточным тяготением. Все астероиды современного пояса теряют массу при столкновениях. Лишь несколько самых больших в лучшем случае способны сохранить свою массу. Точно так же и столкновения планетоземалей приводили к росту лишь наиболее крупных из них.

Внутреннюю часть Солнечной системы образуют планеты земной группы — от Меркурия до Марса. Состав этих планет свидетельствует, что их рост происходил в отсутствие легких газов за счет каменистых частиц и тел, содержавших различное количество железа и других металлов. Главное условие роста тел при столкновениях — их низкие относительные скорости на начальном этапе. Чтобы тела достигли километровых размеров, хаотические скорости не должны превышать 1 м/с. Это возможно, только если нет сильного воздействия из вне. В зоне роста планет земной группы внешние воздействия были слабы, лишь в зоне Марса сказалось влияние Юпитера, замедлявшее его рост и уменьшавшее массу. В поясе астероидов, наоборот, явно прослеживается возмущающее влияние соседей планеты-гиганта Юпитера. Стадия объединения планетезималей в планеты и их рост длилась более 100 млн лет.

Период рассеяния газа из зоны земных планет продолжается не более 10 млн лет. В основном газ выдувался солнечным ветром, т.е. потоками заряженных частиц, выбрасываемых с поверхности Солнца со скоростями сотни километров в секунду. Солнечный ветер очистил от газа не только область планет земной группы, но и более отдаленные пространства планетной системы. Однако планеты-гиганты Юпитер и Сатурн уже успели вобрать в себя огромное количество вещества, подавляющую часть массы всей планетной системы. Как же формировались планеты-гиганты? Их зародыши могли возникать двумя путями: через гравитационную неустойчивость газовых масс допланетного диска или путем нарастающего захвата газовой атмосферы на массивном ядре из планетезималей. В первом случае масса допланетного облака должна была составлять значительную долю массы Солнца, а состав планет-гигантов должен совпадать с солнечным. Ни то ни другое не соответствует фактам. Исследования последних лет показали, что в ядрах Юпитера и Сатуна, по-видимому, присутствуют элементы тяжелее водорода и гелия, составляющее по меньшей мере 5-6% массы планеты. Это существенно больше, чем можно было бы ожидать при солнечном содержании химических элементов. Значит, более вероятен второй путь: сначала, как и у планет земной группы, образуется массивное ядро-зародыш из каменистых и ледяных планетезималей, а затем оно наращивает водородно-гелиевую оболочку.

Процесс присоединения вещества называют аккрецией . Начиная с одной-двух масс Земли, тело может не только удерживать газовую атмосферу на поверхности, но и в ускоряющемся темпе захватывать новые порции газа, если на пути его движения имеется газовая среда. Продолжительность этого процесса намного короче, чем стадия образования ядра-зародыша. По расчетам ученых, рост ядра Юпитера длится десятки, а ядра Сатурна — сотни миллионов лет. Пока ядро, погруженное в газ, невелико, оно присоединяет лишь небольшую атмосферу, находящуюся в равновесии. Но при некоторой критической массе (2-3 массы Земли) газ начинает в возрастающем темпе выпадать на тело, сильно увеличивая его массу. На стадии быстрой аккреции всего за несколько сот лет Юпитер вырос до массы, превышающей 50 масс Земли, поглотив газ из сферы своего гравитационного влияния. Затем скорость аккреции упала, так как газ мог поступать к планете лишь путем медленной диффузии из более широкой зоны диска.

Одновременно Юпитер продолжал расти за счет твердых планетезималей, а те, что не были им поглощены, могли быть отброшены его тяготением либо внутрь, в зону астероидов и зону Марса, либо прочь из Солнечной системы. Юпитер сообщал твердым телам скорости больше скорости освобождения: для того чтобы покинуть Солнечную систему с орбиты Юпитера, достаточно скорости всего 18 км/с, а тело, пролетающее от Юпитера на расстоянии нескольких его радиусов, разгоняется до десятков км/с.

Сатурн формировался аналогичным образом. Но его ядро росло не так быстро и достигло критической массы позднее. К этому времени из-за действия солнечного ветра газа осталось меньше, чем в зоне Юпитера к началу его аккреции. Вот почему по сравнению с Юпитером Сатурн содержит в несколько раз больше конденсируемого вещества и еще сильнее отличается по составу от Солнца. Уран и Нептун росли еще медленнее, а газ из внешней зоны диссипировал быстрее. Когда эти планеты достигли критической массы, газа в их зонах почти не осталось. Поэтому на долю водорода и гелия приходится лишь около 10% массы Урана, Нептун же содержит их еще меньше. Главными составляющими этих тел являются вода, метан и аммиак, а также окислы тяжелых элементов; газы входят в планетные атмосферы. Двухступенчатая схема образования планет-гигантов (формирование ядер из конденсированных веществ и газовая аккреция на эти ядра) подтверждается фактами. Во-первых, выяснилось, что современные массы ядер Юпитера и Сатурна, а также массы Урана и Нептуна без их атмосфер имеют близкие значения: 14-20 масс Земли, тогда как доля газов — водорода и гелия — в них закономерно уменьшается по мере удаления от Солнца. Во-вторых, существуют такие «вещественные доказательства» ранней истории планет-гигантов, как их спутники и кольца. Аккреция газа на планеты сопровождается образованием вокруг них газопылевых дисков, в которых формируются спутники.

На стадии быстрой аккреции освобождалось огромное количество энергии, и верхние слои планет сильно нагревались. Максимальная температура поверхности Юпитера и Сатурна, по-видимому, составляла несколько тысяч градусов — почти как у звезд. В диске Юпитера, где формировались его спутники, на близких расстояниях от планеты температура была выше точки конденсации водяного пара, а на более далеких — ниже. И действительно, ближние спутники Юпитера, включая Ио и Европу, состоят из каменистых веществ, а более отдаленные — Ганимед и Каллисто — наполовину из водяного льда. У Сатурна в диске температура была ниже, поэтому лед там конденсировался на всех расстояниях (частицы колец Сатурна и все его близкие спутники — ледяные).

Образование астероидов

Общая масса всех астероидов, заполняющих зону на расстоянии 2-4 а.е. от Солнца, не превышает массы Луны. Если вещество в допланетном диске распределялось достаточно равномерно, то первоначально в зоне астероидов могло содержаться в 100-1000 раз больше вещества, чем в настоящее время. Пояс астероидов — это несостоявшаяся планета. Такое определение впервые дал О.Ю. Шмидт, предположивший, что процессу аккумуляции планеты помешало соседство массивного Юпитера. Сегодня ясно, что дело обстояло сложнее. Высокие хаотические скорости астероидов (5 км/с) не могли быть порождены современными возмущениями Юпитера даже за весьма длительные промежутки времени. Сами астероиды совершенно неспособны совершить подобную «раскачку». Следовательно, искать причину больших хаотически скоростей, а заодно и «опустошения» астероидного пояса нужно в прошлом, в процессе аккумуляции планет. В нем скрыт ответ на вопрос, почему именно рост Юпитера мог обогнать образование планеты, более близкой к Солнцу.

При одинаковой плотности конденсированного вещества в зоне «питания» планета формируется тем быстрее, чем короче период ее обращения вокруг Солнца. У астероидов период обращения составляет 3-6 лет, а у Юпитера — около 12 лет. Во всех моделях допланетного диска плотность с увеличением расстояния от Солнца убывает. Как же объяснить преимущество Юпитера? Ученые доказали, что в пределах зоны астероидов летучие вещества присутствовали в газообразном состоянии, тогда как на расстоянии Юпитера проходила граница конденсации паров воды. Это привело к тому, что рост допланетных тел в зоне Юпитера ускорился: гравитационная неустойчивость проявилась раньше; сгущения (в основном ледяные) были больше, чем в зоне астероидов; твердые тела, в которые они превращались, росли намного стремительнее.

Гравитационные возмущения Юпитера особенно сильно действуют на астероиды, периоды обращения которых вокруг Солнца соизмеримы с периодом Юпитера. Их орбиты становятся вытянутыми, они могут пересекать орбиту Марса и даже Земли. Их осколками являются метеориты, выпадающие на Землю. Вещественный состав метеоритов свидетельствует о том, что астероиды сформировались как отдельные тела 4,6 млрд лет назад, т.е. в ту же эпоху, что и планеты. Кометы представляют собой небольшие тела поперечником 5-10 км. Состоят они в основном из водяного льда с вкраплениями льдов летучих соединений, способных конденсироваться лишь при очень низких температурах. Рассматривались два варианта происхождения комет: в межзвездном пространстве и на периферии Солнечной системы. Кометные орбиты — не параболы, а скорее очень вытянутые эллипсы с большими полуосями порядка 100 тыс. астрономических единиц. Поэтому кометы должны принадлежать Солнечной системе. По современным представлениям кометы — побочный продукт образования планет-гигантов. Это ледяные планетезимали, заброшенные формировавшимися планетами — Юпитером, Сатурном, Ураном и Нептуном — не очень далекую периферию нашей системы. Там кометы образуют гигантское разреженное облако, так называемое облако Оорта.

Как появились спутники планет

В современной планетной космогонии формирование спутников мыслится как сопутствующий процесс. О.Ю. Шмидт писал: «При образовании планет, в процессе сближения частиц с крупными зародышами планет, некоторые из частиц, сталкиваясь, настолько теряли скорость, что выпадали из общего роя и начинали обращаться вокруг планеты. Таки образом, около планетного зародыша образуется сгущение — рой частиц, обращающихся около него по эллиптическим орбитам. Эти частицы также сталкиваются, изменяют свои орбиты. В уменьшенном масштабе в этих роях будут происходить те же процессы, что и при образовании планет. Большинство частиц упадет на планету, часть же их будет образовывать околопланетные зародыши — будущие спутники планет…».

Развитие этой идеи показало, что появление околопланетных роев во время образования планет неизбежно, вопрос лишь в том, сколько массы может быть захвачено той или иной планетой и сколько спутников уцелеет в дальнейшем. Важную роль в эволюции спутниковых систем играет приливное трение. Солнечные приливы затормозили вращение близких к Солнцу планет — Меркурия и Венеры, а они в свою очередь воздействовали на имевшиеся у них в прошлом спутники, замедляя из обращение. Спутники должны были постепенно приблизиться к планетам и упасть на их поверхность. Луна же, наоборот, из-за быстрого вращения Земли постепенно удаляется от нашей планеты вследствие приливного трения. Сама Луна могла образоваться лишь из массивного околоземного роя. Спутники Марса очень малы и по своим свойствам напоминает астероиды. Не исключено, что они — продукт столкновений тел астероидного пояса, залетевших в зону Марса. Следовательно, спутники планет земной группы столь различны, что для понимания их образования нужен индивидуальный подход. Спутники планет-гигантов, напротив, многочисленны и дают богатый материал для проверки общих космогонических идей.

Согласно схеме Шмидта, необходимо учитывать также присутствие газа, преобладавшего над твердым веществом в зоне образования планет-гигантов и их спутников. Вместо околопланетных роев из твердых частиц вокруг планет должны были образовываться газопылевые аккреционные диски, в которых спутники формировались из пылевых субдисков. Газовая составляющая в них не вошла, поскольку массы спутников слишком малы, чтобы началось присоединение газа. Аккумуляция спутников из околопланетных дисков повторяла многие черты образования планет: движение почти в одной плоскости, совпадающей с экватором материнской планеты, и в одном направлении; закономерно увеличивающиеся интервалы между орбитами по мере удаления от планеты. В системе Юпитера явно прослеживается раннее прогревание диска, обеспечивающее каменистый состав ближних спутников — Амальтеи, Ио, Европы. Это позволяет сравнивать растущий Юпитер с «маленьким Солнцем».

Однако аналогия спутниковых систем и планетной системы не может быть полной, так как все процессы вблизи планет во многом зависят еще и от Солнца. Размеры спутниковых систем в десятки и сотни раз меньше расстояний между планетами, соответственно длительность процессов в них намного короче. Некоторые близкие спутники Сатурна (Мимас, Энцелад) за время формирования системы могли успеть вырасти, разрушиться при бомбардировке допланетными телами и вновь аккумулироваться на своих орбитах. Отдаленные спутники, которые обычно обращаются по вытянутым и сильно наклоненным или даже обратным орбитам, находятся под влиянием столь сильных гравитационных возмущений Солнца, что их орбиты меняют свои параметры буквально при каждом обороте вокруг планеты. Эти спутники в отличие от регулярных, образовавшихся в дисках, могли быть захвачены планетами-гигантами при столкновениях астероидов, залетевшых в окрестности планет.

В некотрых системах обнаруживаются следы очень крупных столкновений: удивительно маленький наклон оси Урана к эклиптике, повлиявший также на ориентацию орбит всех его спутников и колец; противовращение Тритона по сравнению с вращением Нептуна вокруг своей оси и др.

На этот вопрос поможет ответить ведущая теория, которую принято называть «протопланетной гипотезой». Согласно ей, небольшие космические объекты влетали друг в друга, из-за чего происходило их соединение. Именно так формировались гиганты нашей планетарной системы, в том числе и «газовый гигант» Юпитер. Сам процесс формирования планет очень интересен и до конца еще не разгадан.

Все началось с рождения нашего светила – звезды по имени Солнце

Вышесказанная теория гласит, что примерно 4,6 миллиардов лет назад на месте нашей планетарной системы не было практически ничего, кроме газа и мелкодисперсной пыли. Данные составляющие образовывают туманности, о которых в современное время часто говорят астрофизики. Примером таких объектов является «Туманность Ориона».

Однажды, как считают планетологи, произошло некое событие, которое изменило давление в центральной части туманности. Возможно, данным событием являлся взрыв «сверхновой» либо пролет массивного космического объекта в непосредственной близости. В любом случае, после этого события туманность распалась, а в ее центре образовался диск. Давление в центральной части диска возросло настолько, что атомы водорода стали контактировать друг с другом, причем довольно тесно. До этого они спокойно сосуществовали и свободно перемещались в облаке. Контакт между атомами водорода заставил их слиться и превратиться в гелий. Таким образом, сформировался солнечный «зародыш», который в дальнейшем стал центром (ядром) светила.

Чтобы сформироваться, светилу понадобилось около 99% космического стройматериала, который располагался вокруг него. Но 1% материи все еще оставался свободным. Именно из него родились планеты, о которых мы знаем ныне практически все.

Вселенский хаос

Несмотря на то, что на ранней стадии формирования наша планетарная система находилась в хаосе, планеты формировалась с завидной скоростью. Газообразные вещества и космическая мелкодисперсная пыль быстро собирались в «сгустки». Светило уже тогда было настолько горячим, что испаряло любой лед, находившийся рядом с ним. Постепенно рождались и приобретали свою теперешнюю форму планеты. Каменистыми стали те объекты, которые располагались ближе к светилу, а газовыми – максимально отдаленные от него.

Согласно многим теориям, в нашей планетарной системе изначально было больше составляющих. Маленькие объекты постоянно врезались в большие, после чего становились их частью. Существует даже мнение, что когда-то в нашу Землю впечатался объект, по размеру сопоставимый с планетой Марс. Почему происходила данная «космическая бомбардировка», ученые не могут понять по сей день. Возможно, причиной тому являлись «газовые гиганты», которые постоянно тревожили остальных своим присутствием. Пролетая, они сбивали с орбиты «карликов-планет», которые потом врезались в более крупные объекты.

Можно ли считать, что на сегодняшний день все планеты Солнечной системы сформировались

Так думать не следует, так как в вышесказанной планетарной системе еще имеются объекты, которые теоретически могли бы стать планетами. К примеру, астероидный пояс, расположенный между гигантом-Юпитером и Марсом. Если бы гравитация первой планеты была бы мене сильной, возможно, астероиды сформировались бы в цельный космический объект. Кроме этого, через нашу систему постоянно пролетают кометы, метеориты и прочие объекты. Астрономы называют их «космическими кирпичиками» и не зря.

Теориям, подобным вышеописанной, можно доверять, так как астрономы проверяют их несколько раз с помощью современной технологии – компьютерного моделирования. Перед тем, как предложить теорию, специалисты создают несколько компьютерных моделей. В каждой из них события развиваются по-разному. Приемлемым вариантом будут считать тот, результат которого максимально соответствует действительности.

В масштабах космоса планеты — всего лишь песчинки, играющие незначительную роль в грандиозной картине развития природных процессов. Однако это наиболее разнообразные и сложные объекты Вселенной. Ни у одного из других типов небесных тел не наблюдается подобного взаимодействия астрономических, геологических, химических и биологических процессов. Ни в одном из иных мест в космосе не может зародиться жизнь в том виде, как мы ее знаем. Только в течение последнего десятилетия астрономы обнаружили более 200 планет.

Формирование планет, издавна считавшееся спокойным и стационарным процессом, в действительности оказалось весьма хаотическим.

Поразительное разнообразие масс, размеров, состава и орбит заставило многих задуматься об их происхождении. В 1970-е гг. формирование планет считалось упорядоченным, детерминированным процессом — конвейером, на котором аморфные газово-пылевые диски превращаются в копии Солнечной системы. Но теперь нам известно, что это хаотичный процесс, предполагающий различный результат для каждой системы. Родившиеся планеты выжили в хаосе конкурирующих механизмов формирования и разрушения. Многие объекты погибли, сгорев в огне своей звезды, или были выброшены в межзвездное пространство. У нашей Земли могли быть давно потерянные близнецы, странствующие ныне в темном и холодном космосе.

Наука о формировании планет лежит на стыке астрофизики, планетологии, статистической механики и нелинейной динамики. В целом планетологи развивают два основных направления. Согласно теории последовательной аккреции, крошечные частицы пыли слипаются, образуя крупные глыбы. Если такая глыба притянет к себе много газа, она превращается в газовый гигант, как Юпитер, а если нет — в каменистую планету типа Земли. Основные недостатки данной теории — медлительность процесса и возможность рассеяния газа до формирования планеты.

В другом сценарии (теория гравитационной неустойчивости) утверждается, что газовые гиганты формируются путем внезапного коллапса, приводящего к разрушению первичного газово-пылевого облака. Данный процесс в миниатюре копирует формирование звезд. Но гипотеза эта весьма спорная, т. к. предполагает наличие сильной неустойчивости, которая может и не наступить. К тому же астрономы обнаружили, что наиболее массивные планеты и наименее массивные звезды разделены «пустотой» (тел промежуточной массы просто не существует). Такой «провал» свидетельствует о том, что планеты — это не просто маломассивные звезды, но объекты совершенно иного происхождения.

Несмотря на то что ученые продолжают спорить, большинство считает более вероятным сценарий последовательной аккреции. В данной статье я буду опираться именно на него.

1. Межзвездное облако сжимается

Время: 0 (исходная точка процесса формирования планет)

Наша Солнечная система находится в Галактике, где около 100 млрд звезд и облака пыли и газа, в основном — остатки звезд предыдущих поколений. В данном случае пыль — это всего лишь микроскопические частицы водяного льда, железа и других твердых веществ, сконденсировавшиеся во внешних, прохладных слоях звезды и выброшенные в космическое пространство. Если облака достаточно холодные и плотные, они начинают сжиматься под действием силы гравитации, образуя скопления звезд. Такой процесс может длиться от 100 тыс. до нескольких миллионов лет.

Каждую звезду окружает диск из оставшегося вещества, которого достаточно для образования планет. Молодые диски в основном содержат водород и гелий. В их горячих внутренних областях частицы пыли испаряются, а в холодных и разреженных внешних слоях частицы пыли сохраняются и растут по мере конденсации на них пара.

Астрономы обнаружили много молодых звезд, окруженных такими дисками. Звезды возрастом от 1 до 3 млн лет обладают газовыми дисками, в то время как у тех, что существуют более 10 млн лет, наблюдаются слабые, бедные газом диски, поскольку газ «выдувает» из него либо сама новорожденная звезда, либо соседние яркие звезды. Этот диапазон времени как раз и есть эпоха формирования планет. Масса тяжелых элементов в таких дисках сравнима с массой данных элементов в планетах Солнечной системы: довольно сильный аргумент в защиту того факта, что планеты образуются из таких дисков.

Результат: новорожденная звезда окружена газом и крошечными (микронного размера) частицами пыли.

Клубки космической пыли

Даже гигантские планеты начинались со скромных тел — микронных пылинок (пепел давно умерших звезд), плавающих во вращающемся газовом диске. С удалением от новорожденной звезды температура газа падает, проходя через «линию льда», за которой вода замерзает. В нашей Солнечной системе эта граница отделяет внутренние твердые планеты от внешних газовых гигантов.

  1. Частицы сталкиваются, слипаются и растут.
  2. Малые частицы увлекает газ, но те, что больше миллиметра, тормозятся и по спирали движутся к звезде.
  3. У линии льда условия таковы, что сила трения меняет направление. Частицы стремятся слипнуться и легко объединяются в более крупные тела — планетезимали.

2. Диск приобретает структуру

Время: около 1 млн лет

Частицы пыли в протопланетном диске, хаотически двигаясь вместе с потоками газа, сталкиваются друг с другом и при этом иногда слипаются, иногда разрушаются. Пылинки поглощают свет звезды и переизлучают его в длинноволновом инфракрасном диапазоне, передавая тепло в самые темные внутренние области диска. Температура, плотность и давление газа в целом снижаются с удалением от звезды. Из-за баланса давления, гравитации и центробежной силы скорость вращения газа вокруг звезды меньше, чем у свободного тела на таком же расстоянии.

В результате пылинки размером более нескольких миллиметров опережают газ, поэтому встречный ветер тормозит их и вынуждает по спирали опускаться к звезде. Чем крупнее становятся эти частицы, тем быстрее они движутся вниз. Глыбы метрового размера могут сократить свое расстояние от звезды вдвое всего за 1000 лет.

Приближаясь к звезде, частицы нагреваются, и постепенно вода и другие вещества с низкой температурой кипения, называемые летучими веществами, испаряются. Расстояние, на котором это происходит, — так называемая «линия льда», — составляет 2-4 астрономических единицы (а.е.). В Солнечной системе это как раз нечто среднее между орбитами Марса и Юпитера (радиус орбиты Земли равен 1 а.е.). Линия льда делит планетную систему на внутреннюю область, лишенную летучих веществ и содержащую твердые тела, и внешнюю, богатую летучими веществами и содержащую ледяные тела.

На самой линии льда накапливаются молекулы воды, испарившиеся из пылинок, что служит пусковым механизмом для целого каскада явлений. В этой области происходит разрыв в параметрах газа, и возникает скачок давления. Баланс сил заставляет газ ускорять свое движение вокруг центральной звезды. В результате попадающие сюда частицы оказываются под влиянием не встречного, а попутного ветра, подгоняющего их вперед и останавливающего их миграцию внутрь диска. А поскольку из его внешних слоев продолжают поступать частицы, линия льда превращается в полосу его скопления.

Скапливаясь, частицы сталкиваются и растут. Некоторые из них прорываются за линию льда и продолжают миграцию внутрь; нагреваясь, они покрываются жидкой грязью и сложными молекулами, что делает их более липкими. Некоторые области настолько заполняются пылью, что взаимное гравитационное притяжение частиц ускоряет их рост.

Постепенно пылинки собираются в тела километрового размера, называемые планетезималями, которые на последней стадии формирования планет сгребают почти всю первичную пыль. Увидеть сами планетезимали в формирующихся планетных системах трудно, но астрономы могут догадываться об их существовании по обломкам их столкновений (см.: Ардила Д. Невидимки планетных систем // ВМН, № 7, 2004).

Результат: множество километровых «строительных блоков», называемых планетезималями.

Рост олигархов

Миллиарды километровых планетезималей, сформировавшихся на стадии 2, собираются затем в тела размером с Луну или Землю, называемые зародышами. Небольшое их количество господствует в своих орбитальных зонах. Эти «олигархи» среди зародышей борются за оставшееся вещество

3. Формируются зародыши планет

Время: от 1 до 10 млн лет

Покрытые кратерами поверхности Меркурия, Луны и астероидов не оставляют сомнения в том, что в период формирования планетные системы похожи на стрелковый тир. Взаимные столкновения планетезималей могут стимулировать как их рост, так и разрушение. Баланс между коагуляцией и фрагментацией приводит к распределению по размерам, при котором мелкие тела в основном отвечают за площадь поверхности системы, а крупные определяют ее массу. Орбиты тел вокруг звезды вначале могут быть эллиптическими, но со временем торможение в газе и взаимные столкновения превращают орбиты в круговые.

Вначале рост тела происходит в силу случайных столкновений. Но чем больше становится планетезималь, тем сильнее ее гравитация, тем интенсивнее она поглощает своих маломассивных соседей. Когда массы планетезималей становятся сравнимы с массой Луны, их гравитация возрастает настолько, что они встряхивают окружающие тела и отклоняют их в стороны еще до столкновения. Этим они ограничивают свой рост. Так возникают «олигархи» — зародыши планет со сравнимыми массами, конкурирующие друг с другом за оставшиеся планетезимали.

Зоной питания каждого зародыша служит узкая полоса вдоль его орбиты. Рост прекращается, когда зародыш поглотит большую часть планетезималей из своей зоны. Элементарная геометрия показывает, что размер зоны и продолжительность поглощения возрастают с удалением от звезды. На расстоянии 1 а.е. зародыши достигают массы 0,1 массы Земли в течение 100 тыс. лет. На расстоянии 5 а.е. они достигают четырех земных масс за несколько миллионов лет. Зародыши могут стать еще больше вблизи линии льда или на краях разрывов диска, где концентрируются планетезимали.

Рост «олигархов» заполняет систему излишком тел, стремящихся стать планетами, но лишь немногим это удается. В нашей Солнечной системе планеты хотя и распределены по большому пространству, но они близки друг к другу насколько это возможно. Если между планетами земного типа поместить еще одну планету с массой Земли, то она выведет из равновесия всю систему. То же самое можно сказать и о других известных системах планет. Если вы видите чашку кофе, заполненную до краев, то можете быть почти уверены, что кто-то ее переполнил и разлил немного жидкости; маловероятно, что можно до краев наполнить емкость, не разлив ни капли. Настолько же вероятно, что планетные системы в начале своей жизни обладают большим количеством вещества, чем в конце. Некоторые объекты выбрасываются из системы прежде, чем она достигнет равновесия. Астрономы уже наблюдали свободно летающие планеты в молодых звездных скоплениях.

Результат: «олигархи» — зародыши планет с массами в диапазоне от массы Луны до массы Земли.

Гигантский скачок для планетной системы

Формирование такого газового гиганта, как Юпитер, — важнейший момент в истории планетной системы. Если такая планета сформировалась, она начинает управлять всей системой. Но чтобы это произошло, зародыш должен собирать газ быстрее, чем он движется по спирали к центру.

Формированию гигантской планеты мешают волны, которые она возбуждает в окружающем газе. Действие этих волн не уравновешивается, тормозит планету и вызывает ее миграцию в сторону звезды.

Планета притягивает газ, но он не может осесть, пока не остынет. А за это время она может довольно близко по спирали подойти к звезде. Гигантская планета может сформироваться далеко не во всех системах

4. Рождается газовый гигант

Время: от 1 до 10 млн лет

Вероятно, Юпитер начинался с зародыша, сравнимого по размеру с Землей, а затем накопил еще около 300 земных масс газа. Такой внушительный рост обусловлен различными конкурирующими механизмами. Гравитация зародыша притягивает газ из диска, но сжимающийся к зародышу газ выделяет энергию, и чтобы осесть, он должен охлаждаться. Следовательно, скорость роста ограничена возможностью охлаждения. Если оно происходит слишком медленно, звезда может сдуть газ обратно в диск прежде, чем зародыш образует вокруг себя плотную атмосферу. Самым узким местом в отводе тепла является перенос излучения сквозь внешние слои растущей атмосферы. Поток тепла там определяется непрозрачностью газа (в основном зависит от его состава) и градиентом температуры (зависит от начальной массы зародыша).

Ранние модели показали, что зародыш планеты для достаточно быстрого охлаждения должен иметь массу не менее 10 масс Земли. Такой крупный экземпляр может вырасти лишь вблизи линии льда, где ранее собралось много вещества. Возможно, поэтому Юпитер расположен как раз за этой линией. Крупные зародыши могут образоваться и в любом другом месте, если диск содержит больше вещества, чем обычно предполагают планетологи. Астрономы уже наблюдали немало звезд, диски вокруг которых в несколько раз плотнее предполагавшихся ранее. Для крупного образца перенос тепла не представляется серьезной проблемой.

Другой фактор, затрудняющий рождение газовых гигантов, — движение зародыша по спирали к звезде. В процессе, называемом миграцией I типа, зародыш возбуждает волны в газовом диске, которые в свою очередь гравитационно воздействуют на его движение по орбите. Волны следуют за планетой, как тянется за лодкой ее след. Газ на внешней стороне орбиты вращается медленнее зародыша и влечет его назад, тормозя движение. А газ внутри орбиты вращается быстрее и тянет вперед, ускоряя его. Внешняя область обширнее, поэтому она выигрывает битву и заставляет зародыш терять энергию и опускаться к центру орбиты на несколько астрономических единиц за миллион лет. Эта миграция обычно прекращается у линии льда. Здесь встречный газовый ветер превращается в попутный и начинает подталкивать зародыш вперед, компенсируя его торможение. Возможно, еще и поэтому Юпитер находится именно там, где он находится.

Рост зародыша, его миграция и потеря газа из диска происходят почти в одном и том же темпе. Какой процесс победит — зависит от везения. Возможно, несколько поколений зародышей пройдут через процесс миграции, не будучи способными завершить свой рост. За ними из внешних областей диска к его центру движутся новые партии планетезималей, и это повторяется до тех пор, пока в конце концов не образуется газовый гигант, или же пока весь газ не рассосется, и газовый гигант уже не сможет сформироваться. Астрономы открыли планеты типа Юпитера примерно у 10% исследованных солнцеподобных звезд. Ядра таких планет могут быть редкими зародышами, выжившими из многих поколений — последними из могикан.

Итог всех этих процессов зависит от начального состава вещества. Примерно треть звезд, богатых тяжелыми элементами, имеет планеты типа Юпитера. Возможно, у таких звезд были плотные диски, позволившие сформироваться массивным зародышам, у которых не было проблем с теплоотводом. И, напротив, вокруг звезд, бедных тяжелыми элементами, планеты формируются редко.

В некий момент масса планеты начинает расти чудовищно быстро: за 1000 лет планета типа Юпитера приобретает половину своей конечной массы. При этом она выделяет так много тепла, что сияет почти как Солнце. Процесс стабилизируется, когда планета становится настолько массивной, что поворачивает миграцию I типа «с ног на голову». Вместо того чтобы диск менял орбиту планеты, сама планета начинает изменять движение газа в диске. Газ внутри орбиты планеты вращается быстрее нее, поэтому ее притяжение тормозит газ, вынуждая его падать в сторону звезды, т. е. от планеты. Газ же вне орбиты планеты вращается медленнее, поэтому планета ускоряет его, заставляя двигаться наружу, опять же от планеты. Таким образом, планета создает разрыв в диске и уничтожает запас строительного материала. Газ пытается его заполнить, но компьютерные модели показывают, что планета выигрывает битву, если при расстоянии в 5 а.е. ее масса превышает массу Юпитера.

Эта критическая масса зависит от эпохи. Чем раньше формируется планета, тем больше будет ее рост, поскольку в диске еще много газа. У Сатурна масса меньше, чем у Юпитера, просто потому, что он сформировался на несколько миллионов лет позже. Астрономы обнаружили дефицит планет с массами от 20 масс Земли (это масса Нептуна) до 100 земных масс (масса Сатурна). Это может стать ключом к восстановлению картины эволюции.

Результат: Планета размером с Юпитер (или ее отсутствие).

5. Газовый гигант становится неусидчивым

Время: от 1 до 3 млн лет

Как ни странно, многие внесолнечные планеты, открытые за последние десять лет, обращаются вокруг своей звезды на очень близком расстоянии, гораздо ближе, чем Меркурий — вокруг Солнца. Эти так называемые «горячие Юпитеры» сформировались не там, где они находятся сейчас, т. к. орбитальная зона питания была бы слишком мала для поставки необходимого вещества. Возможно, для их существования нужна трехступенчатая последовательность событий, которая по какой-то причине не реализовалась в нашей Солнечной системе.

Во-первых, газовый гигант должен формироваться во внутренней части планетной системы, вблизи линии льда, пока в диске еще достаточно газа. Но для этого в диске должно быть много и твердого вещества.

Во-вторых, планета-гигант должна переместиться к месту своего нынешнего расположения. Миграция I типа не может обеспечить этого, т. к. она действует на зародыши еще до того, как они наберут много газа. Но возможна и миграция II типа. Формирующийся гигант создает разрыв в диске и сдерживает течение газа через свою орбиту. В этом случае он должен бороться с тенденцией турбулентного газа распространяться в смежные области диска. Газ никогда не перестанет сочиться в разрыв, и его диффузия к центральной звезде заставит планету терять орбитальную энергию. Этот процесс довольно медленный: нужно несколько миллионов лет для перемещения планеты на несколько астрономических единиц. Поэтому планета должна начать формироваться во внутренней части системы, если в итоге ей предстоит выйти на орбиту вблизи звезды. Когда эта и другие планеты продвигаются внутрь, они толкают перед собой оставшиеся планетезимали и зародыши, возможно, создавая «горячие Земли» на еще более близких к звезде орбитах.

В-третьих, что-то должно остановить движение, прежде чем планета упадет на звезду. Это может быть магнитное поле звезды, расчищающее от газа пространство вблизи звезды, а без газа движение прекращается. Возможно, планета возбуждает приливы на звезде, а они в свою очередь замедляют падение планеты. Но эти ограничители могут и не срабатывать во всех системах, поэтому многие планеты могут продолжать свое движение к звезде.

Результат: планета-гигант на близкой орбите («горячий Юпитер»).

Как обнять звезду

Во многих системах образуется гигантская планета и начинает приближаться по спирали к звезде. Происходит это потому, что газ в диске теряет энергию из-за внутреннего трения и оседает к звезде, увлекая за собой планету, которая со временем оказывается так близко к звезде, что та стабилизирует ее орбиту

6. Появляются и другие планеты-гиганты

Время: от 2 до 10 млн лет

Если удалось сформироваться одному газовому гиганту, то он способствует рождению следующих гигантов. Многие, а возможно и большинство известных планет-гигантов имеют близнецов сравнимой массы. В Солнечной системе Юпитер помог Сатурну сформироваться быстрее, чем это произошло бы без его помощи. Кроме того, он «протянул руку помощи» Урану и Нептуну, без чего они не достигли бы своей нынешней массы. На их расстоянии от Солнца процесс формирования без посторонней помощи шел бы очень медленно: диск рассосался бы еще до того, как планеты успели бы набрать массу.

Первый газовый гигант оказывается полезным по нескольким причинам. У внешней кромки образованного им разрыва вещество концентрируется, в общем, по той же причине, что и на линии льда: перепад давления заставляет газ ускоряться и действовать как попутный ветер на пылинки и планетезимали, останавливая их миграцию из внешних областей диска. К тому же гравитация первого газового гиганта часто отбрасывает соседние с ним планетезимали во внешнюю область системы, где из них формируются новые планеты.

Второе поколение планет формируется из вещества, собранного для них первым газовым гигантом. При этом большое значение имеет темп: даже небольшая задержка во времени может существенно изменить результат. В случае Урана и Нептуна аккумуляция планетезималей была чрезмерной. Зародыш стал слишком большим, 10-20 земных масс, что отсрочило начало аккреции газа до момента, когда в диске его почти не осталось. Формирование этих тел завершилось, когда они набрали всего по две земных массы газа. Но это уже не газовые, а ледяные гиганты, которые могут оказаться самым распространенным типом.

Гравитационные поля планет второго поколения увеличивают в системе хаос. Если эти тела сформировались слишком близко, их взаимодействие друг с другом и с газовым диском может выбросить их на более высокие эллиптические орбиты. В Солнечной системе планеты имеют почти круговые орбиты и достаточно удалены друг от друга, что уменьшает их взаимное влияние. Но в других планетных системах орбиты как правило эллиптические. В некоторых системах они резонансные, т. е. орбитальные периоды соотносятся как небольшие целые числа. Вряд ли это было заложено при формировании, но могло возникнуть при миграции планет, когда постепенно взаимное гравитационное влияние привязало их друг к другу. Различие между такими системами и Солнечной системой могло определяться разным начальным распределением газа.

Большинство звезд рождаются в скоплениях, причем более половины из них — двойные. Планеты могут сформироваться не в плоскости орбитального движения звезд; в этом случае гравитация соседней звезды быстро перестраивает и искажает орбиты планет, образуя не такие плоские системы, как наша Солнечная, а сферические, напоминающие рой пчел вокруг улья.

Результат: компания планет-гигантов.

Прибавление в семействе

Первый газовый гигант создает условия для рождения следующих. Расчищенная им полоса действует как крепостной ров, который не может преодолеть вещество, движущееся снаружи к центру диска. Оно собирается на внешней стороне разрыва, где из него формируются новые планеты.

7. Формируются планеты типа Земли

Время: от 10 до 100 млн лет

Планетологи считают, что похожие на Землю планеты распространены больше, чем планеты-гиганты. Несмотря на то что рождение газового гиганта требует точного баланса конкурирующих процессов, формирование твердой планеты должно быть намного сложнее.

До обнаружения внесолнечных землеподобных планет мы опирались лишь на данные о Солнечной системе. Четыре планеты земной группы — Меркурий, Венера, Земля и Марс — в основном состоят из веществ с высокой температурой кипения, таких как железо и силикатные породы. Это свидетельствует о том, что сформировались они внутри линии льда и заметно не мигрировали. На таких расстояниях от звезды зародыши планет могут вырасти в газовом диске до 0,1 земной массы, т. е. не больше чем Меркурий. Для дальнейшего роста нужно, чтобы орбиты зародышей пересекались, тогда они будут сталкиваться и сливаться. Условия для этого возникают после испарения газа из диска: под действием взаимных возмущений в течение нескольких миллионов лет орбиты зародышей вытягиваются в эллипсы и начинают пересекаться.

Гораздо труднее объяснить, как система вновь стабилизирует себя, и как планеты земной группы оказались на их нынешних почти круговых орбитах. Небольшое количество оставшегося газа могло бы это обеспечить, но такой газ должен был предотвратить изначальное «разбалтывание» орбит зародышей. Возможно, когда планеты уже почти сформировались, остается еще приличный рой планетезималей. В течение следующих 100 млн лет планеты сметают часть из этих планетезималей, а оставшиеся отклоняют в сторону Солнца. Планеты передают свое беспорядочное движение обреченным планетезималям и переходят на круговые или почти круговые орбиты.

Согласно другой идее, длительное влияние гравитации Юпитера вызывает у формирующихся планет земной группы миграцию, передвигая их в области со свежим веществом. Это влияние должно быть сильнее на резонансных орбитах, которые постепенно сдвигались внутрь по мере опускания Юпитера к его современной орбите. Радиоизотопные измерения указывают, что астероиды сформировались первыми (спустя 4 млн лет после образования Солнца), затем — Марс (через 10 млн лет), а позже — Земля (через 50 млн лет): как будто бы поднятая Юпитером волна прошла через Солнечную систему. Если бы она не встретила препятствий, то сдвинула бы все планеты земной группы к орбите Меркурия. Как же им удалось избежать столь печальной участи? Возможно, они уже стали слишком массивными, и Юпитер не смог их сильно сдвинуть, а может быть, сильные удары выбросили их из зоны действия Юпитера.

Заметим, что многие планетологи не считают роль Юпитера решающей в формировании твердых планет. Большинство солнцеподобных звезд лишено планет типа Юпитера, но вокруг них есть пылевые диски. А значит, там есть планетезимали и зародыши планет, из которых могут сформироваться объекты типа Земли. Основной вопрос, на который должны ответить наблюдатели в ближайшее десятилетие, — в скольких системах есть земли, но нет юпитеров.

Важнейшей эпохой для нашей планеты стал период между 30 и 100 млн лет после формирования Солнца, когда зародыш размером с Марс врезался в прото-Землю и породил гигантское количество обломков, из которых сформировалась Луна. Столь мощный удар, конечно же, разбросал огромное количество вещества по Солнечной системе; поэтому землеподобные планеты в других системах тоже могут иметь спутники. Этот сильный удар должен был сорвать первичную атмосферу Земли. Ее современная атмосфера в основном возникла из газа, заключенного в планетезималях. Из них сформировалась Земля, а позже этот газ вышел наружу при извержении вулканов.

Результат: планеты земного типа.

Объяснение некругового движения

Во внутренней области солнечной системы зародыши планет не могут расти, захватывая газ, поэтому они должны сливаться друг с другом. Для этого их орбиты должны пересекаться, а значит, что-то должно нарушить их первоначально круговое движение.

Когда образуются зародыши, их круговые или почти круговые орбиты не пересекаются.

Гравитационное взаимодействие зародышей между собой и с гигантской планетой возмущает орбиты.

Зародыши объединяются в планету типа земли. Она возвращается на круговую орбиту, перемешивая оставшийся газ и разбрасывая сохранившиеся планетезимали.

8. Начинаются операции по зачистке

Время: от 50 млн до 1 млрд лет

К этому моменту планетная система уже почти сформировалась. Продолжаются еще несколько второстепенных процессов: распад окружающего звездного скопления, способного своей гравитацией дестабилизировать орбиты планет; внутренняя неустойчивость, возникающая после того, как звезда окончательно разрушает свой газовый диск; и, наконец, продолжающееся рассеивание оставшихся планетезималей гигантской планетой. В Солнечной системе Уран и Нептун выбрасывают планетезимали наружу, в пояс Койпера, или же к Солнцу. А Юпитер своим мощным тяготением отсылает их в облако Оорта, на самый край области гравитационного влияния Солнца. В облаке Оорта может содержаться около 100 земных масс вещества. Время от времени планетезимали из пояса Койпера или облака Оорта приближаются к Солнцу, образуя кометы.

Разбрасывая планетезимали, сами планеты немного мигрируют, и этим можно объяснить синхронизацию орбит Плутона и Нептуна. Возможно, орбита Сатурна когда-то располагалась ближе к Юпитеру, но затем отдалилась от него. Вероятно, с этим связана так называемая поздняя эпоха сильной бомбардировки — период очень интенсивных столкновений с Луной (и, по-видимому, с Землей), наступивший спустя 800 млн лет после формирования Солнца. В некоторых системах грандиозные столкновения сформировавшихся планет могут возникать на поздней стадии развития.

Результат: Конец формирования планет и комет.

Посланцы из прошлого

Метеориты — не просто космические камни, а космические ископаемые. По мнению планетологов, это единственные осязаемые свидетели рождения Солнечной системы. Считается, что это куски астероидов, которые являются фрагментами планетезималей, никогда не участвовавших в формировании планет и навсегда оставшихся в замороженном состоянии. Состав метеоритов отражает все, что случилось с их родительскими телами. Поразительно, что на них видны следы от давнего гравитационного воздействия Юпитера.

Железные и каменные метеориты очевидно образовались в планетезималях, испытавших плавление, в результате чего железо отделилось от силикатов. Тяжелое железо опустилось к ядру, а легкие силикаты собрались во внешних слоях. Ученые считают, что нагрев был вызван распадом радиоактивного изотопа алюминий-26, имеющего период полураспада 700 тыс. лет. Взрыв сверхновой или соседняя звезда могли «заразить» протосолнечное облако этим изотопом, в результате чего он в большом количестве попал в первое поколение планетезималей Солнечной системы.

Однако железные и каменные метеориты встречаются редко. Большинство содержит хондры — мелкие зерна миллиметрового размера. Эти метеориты — хондриты — возникли до планетезималей и никогда не испытывали плавления. Похоже, что большинство астероидов не связаны с первым поколением планетезималей, которые скорее всего были выброшены из системы под действием Юпитера. Планетологи вычислили, что в области нынешнего пояса астероидов раньше содержалось в тысячу раз больше вещества, чем сейчас. Частицы, избежавшие когтей Юпитера или позже попавшие в пояс астероидов, объединились в новые планетезимали, но к тому времени в них осталось мало алюминия-26, поэтому они никогда не плавились. Изотопный состав хондритов показывает, что они сформировались примерно через 2 млн лет после начала формирования Солнечной системы.

Стеклообразное строение некоторых хондр указывает, что перед тем как попасть в планетезимали, они были резко нагреты, расплавились, а затем быстро остыли. Волны, управлявшие ранней орбитальной миграцией Юпитера, должны были превращаться в ударные волны и могли вызвать этот внезапный нагрев.

Нет единого плана

До начала эры открытия внесолнечных планет мы могли изучать только Солнечную систему. Несмотря на то что это позволило нам понять микрофизику важнейших процессов, у нас не было представления о путях развития иных систем. Удивительное разнообразие планет, обнаруженных за последнее десятилетие, значительно раздвинуло горизонт наших знаний. Мы начинаем понимать, что внесолнечные планеты — это последнее выжившее поколение в ряду протопланет, испытавших формирование, миграцию, разрушение и непрерывную динамическую эволюцию. Относительный порядок в нашей Солнечной системе не может быть отражением какого-то общего плана.

От попыток выяснить, как в далеком прошлом формировалась наша Солнечная система, теоретики обратились к исследованиям, позволяющим делать прогнозы о свойствах еще не открытых систем, которые могут быть обнаружены в ближайшее время. До сих пор наблюдатели замечали вблизи солнцеподобных звезд только планеты с массами порядка массы Юпитера. Вооружившись приборами нового поколения, они смогут искать объекты земного типа, которые в соответствии с теорией последовательной аккреции должны быть широко распространены. Планетологи только начинают осознавать то, насколько разнообразны миры во Вселенной.

Перевод: В. Г. Сурдин

Дополнительная литература:
1) Towards a Deterministic Model of Planetary Formation . S. Ida and D.N.C. Lin in Astrophysical Journal, Vol. 604, No. 1, pages 388-413; March 2004.
2) Planet Formation: Theory, Observation, and Experiments. Edited by Hubert Klahr and Wolfgang Brandner. Cambridge University Press, 2006.
3) Альвен Х., Аррениус Г. Эволюция Солнечной системы. М.: Мир, 1979.
4) Витязев А.В., Печерникова Г.В., Сафронов В.С. Планеты земной группы: Происхождение и ранняя эволюция. М.: Наука, 1990.

Образование планет и планетарных систем - набор процессов формирования и эволюции отдельных планет и планетарных систем.

Полной ясности в том, какие процессы идут при формировании планет и какие из них доминируют, до сих пор нет. Обобщая наблюдательные данные, можно утверждать лишь то, что :

  • Они образуются ещё до момента рассеяния протопланетного диска .
  • Значительную роль в формировании играет аккреция .
  • Обогащение тяжелыми химическими элементами идет за счет планетезималей .

Энциклопедичный YouTube

    1 / 5

    ✪ Жизнь планетных систем; экзопланеты (рассказывает астроном Валерий Шематович)

    ✪ Образование звёзд и планетных систем

    ✪ Планета Венера (рассказывает астроном Леонид Ксанфомалити и др.)

    ✪ Попов Сергей - Лекция "Формирование Солнечной и других систем ч.1"

    ✪ Попов Сергей - Лекция "Формирование Солнечной и других систем ч.2"

    Субтитры

Теории формирования

Отправная точка всех рассуждений о пути формирования планет - газопылевой (протопланетный) диск вокруг формирующейся звезды. Сценариев, как из него получились планеты, существует два типа :

  1. Доминирующий на данный момент - аккреционный. Предполагает формирования из первоначальных планетозималей.
  2. Второй полагает, что планеты сформировались из первоначальных «сгущений», впоследствии сколлапсировавших.

Окончательно формирование планеты прекращается, когда в молодой звезде зажигаются ядерные реакции и она рассеивает протопланетный диск, за счет давления солнечного ветра, эффекта Пойнтинга - Робертсона и прочих .

Аккреционный сценарий

Вначале из пыли образуются первые планетозимали. Существует две гипотезы как это происходит:

  • Одна утверждает, что они растут из-за парного столкновения очень маленьких тел.
  • Вторая, что планетозимали формируются в ходе гравитационного коллапса в средней части протопланетного газопылевого диска.

По мере роста возникают доминирующие планетозимали, которые впоследствии станут протопланетами. Расчет темпов их роста довольно разнообразен. Однако базой для них служат уравнение Сафронова:

D M d t = π R 2 F G Σ p G M ∗ a 3 {\displaystyle {\frac {dM}{dt}}=\pi R^{2}F_{G}\Sigma _{p}{\sqrt {\frac {GM_{*}}{a^{3}}}}} ,

где R - размер тела, a - радиус его орбиты, M * - масса звезды, Σ p - поверхностная плотность планетозимальной области, а F G - так называемый параметр фокусировки, ключевой в данном уравнении, для различных ситуаций он определяется по-своему. Расти такие тела могут не до бесконечности, а ровно до того момента пока есть небольшие планетозимали в их окрестностях, пограничная масса (так называемой массой изоляции) при этом получается:

M = M (4 π a 3 Σ p) 3 2 3 M ∗ {\displaystyle M={\frac {{\sqrt {M}}(4\pi a^{3}\Sigma _{p})^{\frac {3}{2}}}{3M_{*}}}}

В типичных условиях она варьирует от 0,01 до 0,1 M ⊕ - это уже является протопланетой. Дальнейшее развитие протопланеты может следовать по следующим сценариям, один из которых приводит к образованию планет с твердой поверхностью, другой - к газовым гигантам.

В первом случае, тела с изолированной массой тем или иным образом увеличивают эксцентриситет и их орбиты пересекаются. В ходе череды поглощений более мелких протопланет образуются планеты подобные Земле.

Планета-гигант может образоваться если вокруг протопланеты останется много газа из протопланетного диска. Тогда в роли ведущего процесса дальнейшего приращения массы начинает выступать аккреция. Полная система уравнений описывающий данный процесс:

D r d m = 1 4 π ρ r 2 {\displaystyle {\frac {dr}{dm}}={\frac {1}{4\pi \rho r^{2}}}} (1)

D P d m = − G (m + M c o r e) 4 π r 4 {\displaystyle {\frac {dP}{dm}}=-{\frac {G(m+M_{core})}{4\pi r^{4}}}} (2)

D L d m = ϵ − T ∂ S ∂ t {\displaystyle {\frac {dL}{dm}}=\epsilon -T{\frac {\partial S}{\partial t}}} (3)

D P d T = P (T) {\displaystyle {\frac {dP}{dT}}=P(T)}

Смысл выписанных уравнений следующий (1) - предполагается сферическая симметрия и однородность протопланеты, (2) предполагается, что имеет место гидростатическое равновесие, (3) Нагрев идет при столкновении с планетозималями, а охлаждение происходит только за счет излучения. (4) - уравнения состояние газа.

Рост ядра будущей планеты-гиганта продолжается до M~10 ⊕ Примерно на этом этапе гидростатическое равновесие нарушается. С этого момента весь аккрецирующий газ уходит на формирование атмосферы планеты-гиганта.

Трудности аккреционного сценария

Первые же трудности возникают в механизмах формирования планетозималей. Общей проблемой для обеих гипотез является проблема «метрового барьера»: любое тело в газовом диске постепенно сокращает радиус своей орбиты, и на определенном расстоянии просто сгорит. Для тел размером порядка одного метра, скорость подобного дрейфа наибольшая, а характерное время гораздо меньше необходимого, чтобы планетозималь значительно увеличила свой размер .

Кроме того, в гипотезе слияния метровые планетозимали при столкновении скорее разрушатся на многочисленные мелкие части, нежели образуют единое тело.

Для гипотезы формирования планетозималей в ходе фрагментации диска, классической проблемой была турбулентность. Однако, возможное её решение, а заодно и проблемы метрового барьера, было получено в недавних работах. Если в ранних попытках решений основной проблемой являлась турбулентность, то в новом подходе этой проблемы нет как таковой. Турбулентность может сгруппировать плотные твёрдые частицы, а вместе с потоковой неустойчивостью возможно образование гравитационно-связанного кластера, за время гораздо меньшее, чем время дрейфа к звезде метровых планетозималей.

Вторая проблема - это сам механизм роста массы:

Сценарий гравитационного коллапса

Как и в любом самогравитирующем объекте, в протопланетном диске могут развиваться нестабильности. Впервые эту возможность рассмотрел Тумре (Toomre) в 1981 году . Оказалось, что диск начинает распадаться на отдельные кольца если

Q = c s k π G Σ < 1 {\displaystyle Q={\frac {c_{s}k}{\pi G\Sigma }}<1}

где c s - скорость звука в протопланетном диске, k - эпициклическая частота.

Сегодня параметр Q носит название «параметр Тумре», а сам сценарий называется неустойчивостью Тумре. Время, за которое диск будет разрушен, сравнимо со временем охлаждения диска и высчитывается сходным образом со временем Гельмгольца для звезды.

Трудности сценария гравитационного коллапса

Требуется сверхмассивный протопланетный диск.

Экзопланеты в двойных системах

Из более чем 800 ныне известных экзопланет число обращающихся вокруг одиночных звезд значительно превышает число планет найденных в звездных системах разной кратности. По последним данным последних насчитывается 64 .

Экзопланеты в двойных системах принято разделять по конфигурациям их орбит :

  • Экзопланеты S-класса обращаются вокруг одного из компонентов. Таковых 57.
  • К P-классу относят обращающихся вокруг обоих компонентов. Таковые обнаружены у NN Ser, DP Leo, HU Aqr, UZ For, Kepler-16 (AB)b, Kepler-34 (AB)b, and Kepler-35 (AB)b.

Если попытаться провести статистику, то выяснится :

  1. Значительная часть планет обитают в системах, где компоненты разделены в пределах от 35 до 100 а.е. , концентрируясь вокруг значения в 20 а.е.
  2. Планеты в широких системах (> 100 а.е.) имеют массу от от 0.01 до 10 M J (почти как и для одиночных звезд), в то время как массы планет для систем с меньшим разделением лежат от 0.1 до 10 M J
  3. Планеты в широких системах всегда одиночные
  4. Распределение эксцентриситетов орбиты отличается от одиночных, достигая значений e = 0.925 и e = 0.935.

Важные особенности процессов формирования

Обрезание протопланетного диска. В то время как у одиночных звезд протопланетный диск может тянуться вплоть до пояса Койпера (30-50 а.е.), то в двойных звезд его размер обрезается воздействием второго компонента. Таким образом протяженность протопланетного диска в 2-5 раз меньше расстояния между компонентами.

Искривление протопланетного диска. Оставшийся после обрезания диск продолжает испытывать влияние второго компонента и начинает вытягиваться, деформироваться, сплетаться и даже разрываться. Также такой диск начинает прецессировать.

Сокращение времени жизни протопланетного диска Для широких двойных систем, как и для одиночных, время жизни протопланетного диска составляет 1-10 млн лет. Однако для систем с расстоянием между компонентами менее 40 а.е. время жизни протопланетного диска составляет 0.1-1 млн лет.

Планетозимальный сценарий образования

Несовместные сценарии образования

Существуют сценарии в которых изначальная, сразу после формирования, конфигурация планетной системы отличается от текущей и была достигнута в ходе дальнейшей эволюции.

  • Один из таких сценариев - захват планеты у другой звезды. Так как двойная звезда имеет гораздо больше сечения взаимодействия, то и вероятность столкновения и захват планеты у другой звезды существенно выше.
  • Второй сценарий предполагает, что в ходе эволюции одного из компонентов, уже на стадиях после главной последовательности в изначальной планетарной системе возникают нестабильности. В результате которых планета покидает изначальную орбиту и становится общей для обоих компонент.

Экзопланеты в звездных скоплениях

Возможно существование планет, принадлежащих или обращающихся вокруг звездных скоплений.

Один из центральных вопросов, связанных с изучением нашей планетной системы, - проблема ее происхождения. Как возникла семья небесных тел, обращающихся вокруг Солнца? Ответ на этот вопрос имеет не только важное естественнонаучное, но и мировоззренческое, философское значение. На протяжении веков ученые пытались выяснить прошлое, настоящее, будущее Вселенной. Нередко их представления были в той или иной степени связаны с господствовавшими религиозными воззрениями. Но уже в глубокой древности зародилась мысль, что Вселенная не была создана никем из богов. Она всегда существовала и будет существовать. Одни миры возникают, развиваются, другие - разрушаются и умирают, 3емля, как и другие миры, сформировалась в результате естественных причин.

Однако такие гениальные догадки настолько опережали эпоху, что не могли быть восприняты современниками. В споре о путях происхождения и развития Земли и планет столкнулись два прямо противоположных и непримиримых суждения о том, что лежит в основе мироздания - дух или вечно существующая материя? Создан ли мир богом или он существует вечно?

В отличие от идеалистов, утверждающих первичность духа и считающих мир продуктом творения высшего разума (бога), материалисты признают первичность материи. Подтверждая свои выводы практикой исследований и наблюдений, основываясь на повседневном опыте, материалисты доказывают, что планеты, в том числе и Земля, могли возникнуть лишь из других форм материи, т.е. сформировались естественным путем. В наше время все значительные космогонические гипотезы являются последовательно материалистическими.

Согласно современным представлениям, планеты Солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Наиболее последовательно такая точка зрения проведена в работах советского ученого академика О.Ю. Шмидта. До сих пор планетная космогония рассматривалась как чисто астрономическая проблема, а Шмидт показал, что проблемы космогонии можно решить лишь согласованными усилиями астрономии и наук о Земле, прежде всего геофизики, геологии, геохимии. Такой подход значительно укрепил наблюдательную базу космогонии, предоставив в ее распоряжение обширные фактические данные наук о Земле.

В основе теории О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако вначале состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Однако беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным обращением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого «критического» значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобрели почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединили к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжении миллиардов лет. По произведенным расчетам, 98% своей массы Земля приобрела за 100 миллионов лет.

Таким образом, почти круговые орбиты планет явились результатом осреднения орбит тел, объединившихся в планеты. Деление планет на две группы связано с тем, что в далеких от Солнца частях облака температура была низкой, и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладали метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов (рис.3.2).

Рис.3.2. Внутреннее строение и предполагаемый вещественный состав некоторых планет-гигантов: 1- молекулярный водород; 2 - металлический водород; 3 - водяной лед; 4 - ядро, сложенное из каменных или железокаменных материалов

В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов (рис.3.3).

Научная теория происхождения Солнечной системы подтверждается многочисленными наблюдениями. Однако сейчас мы еще не можем сказать, что процесс образования планет досконально изучен. Например, рассматриваемая теория не учитывает влияния электромагнитных явлений, которые, оказалось, играют определенную роль в формировании космических тел. Выяснение этого и некоторых других вопросов - дело будущего.

Таким образом, в настоящее время считается, что планеты возникли в результате объединения твёрдых тел и частиц, образовавшихся во вращающемся вокруг Солнца гигантском протопланетном облаке, состоящем из газа и пыли. Температура в облаке составляла около 1000 К.

Рис.3.3. Строение и предполагаемый вещественный состав планет земной группы: 1 - силикатное вещество; 2- металлическое; 3 - сульфид-металлическое вещество.

Протопланетное облако образовалось в каком-то совместном процессе, механизм которого до сих пор является предметом дискуссии. Но данные геофизики, исследования метеоритов, лунного грунта содержат некоторые доказательства этой гипотезы.

Протопланетное облако содержало газ «звёздного» состава (водород и гелий) и пыль из более тяжёлых элементов. Сжимающееся облако увеличивало скорость вращения, а это создавало благоприятные условия для преимущественного сжатия вдоль оси вращения и накопления пылинок в средней области облака. Тонкий пылевой слой гравитационно неустойчив. Поэтому он распадается на множество сгустков, превратившихся в рой твёрдых тел. Сначала это были тела сравнительно небольшие по массе и размерам, двигавшиеся по орбитам, близким к круговым. Но по мере роста масс увеличивалось взаимное притяжение тел, возрастали их относительные скорости, приобретали эллиптическую форму орбиты. В процессе многочисленных неупругих столкновений и объединений (слипаний) образовались зародыши планет.

Массы зародышей резко отличались от масс других тел, находившихся вблизи них и образовавших для зародышей своеобразную зону питания. Сначала было очень много таких зародышей и окружавших их зон питания. Но постепенно среди этих зародышей стали выделяться те, которые впоследствии стали настоящими планетами. Такие массивные и двигавшиеся почти по круговым орбитам сверхзародыши получались путём объединения ранее возникших зародышей и обобществления их зон питания.

Уменьшение числа зародышей и появление сверхзародышей происходили до тех пор, пока возникающие крупные и массивные тела не оказались на таких расстояниях, где взаимное притяжение не могло уже существенно изменить их орбиты. Эти безопасные расстояния и стали залогом устойчивости будущей Солнечной системы. Формирование спутников планет, в том числе и нашей Луны, в общих чертах, было сходным процессом. Планетам земной группы и планетам-гигантам понадобилось различное время для своего роста. Например, по некоторым оценкам, наша планета выросла за 1 00 миллионов лет. Планеты - гиганты росли дольше. Это прежде всего связано с наложением зон питания, т.е. с появлением объединённых зон питания протоюпитера и протосатурна, а затем и других будущих планет- гигантов. По мере роста массы протоюпитера тела из его зоны питания начали долетать до протосатурна, а затем, примерно через 150 миллионов лет после начала формирования планет, и в самые отдалённые области планетной системы, а также до орбиты уже сформировавшегося Марса. На определённой стадии своего роста будущие планеты-гиганты, особенно Юпитер, не только «простреливали» телами из своих зон питания Солнечную систему, но и сообщали телам скорости, близкие к параболическим, и выбрасывали их за пределы планетной системы.

При рассмотрении роста сверхзародышей планет-гигантов надо учитывать процесс захвата ими газа, образующего вторую составляющую допланетного облака, собравшегося за пределами орбит планет земной группы. Газ в зонах питания Юпитера и Сатурна вначале тормозил движение тел, уменьшая их относительные скорости, и тем самым задерживал скорость роста зародышей. Но когда зародыши выросли настолько, что могли увеличивать свою массу за счёт захвата (аккреции) газа, преимущественно водорода, их рост ускорился. Некоторая часть газа покинула пределы Солнечной системы.

Направление движения планет вокруг Солнца и различные наклоны осей планет к плоскости эклиптики объясняются следствием роста протопланетных тел. Тела и частицы, падая на формирующуюся планету, передавали ей момент количества движения. Следовательно, направление движения планеты вокруг Солнца есть результирующий момент количества движения множества падений. Преобладающее в Солнечной системе прямое движение планет отражает характер общего вращения тел и частиц вокруг Солнца ещё до возникновения планет. В статистическом процессе усреднения моментов количества движения отдельных тел и частиц могли появиться и аномалии, результатом которых стало обратное движение Венеры. Различные наклоны осей планет в настоящее время объясняют падением крупных тел на зародыши. По наблюдаемым наклонам осей планет удалось оценить массы тел, падавших на зародыши. Так, например, массы тел, участвовавших в формировании Земли, примерно в тысячу раз меньше нынешней массы нашей планеты. Массы тел, падавших на Уран и определивших положение в пространстве оси этой планеты, были сравнимы с массой Земли.

Конечно, не только механические процессы сопровождали стадии образования планет. Сложные переплетения различных физических процессов (тепловые, магнитогидродинамические и др.) участвовали в образовании и эволюции планетной системы. Так, например, крупные массы тел, падая на относительно холодную Землю и глубоко врезаясь в неё, разогревали нашу планету до температуры 1 500 К в области верхней мантии. Такой разогрев оказался сильнее, чем это могло произойти за счёт энергии других механических (гравитационное сжатие, приливные воздействия Луны) и немеханических (распад радиоактивных элементов) процессов. Наша Земля росла не просто тихо и холодно, сталкиваясь с небольшими метеоритами, а испытывала мощные удары, разогревалась, частично плавилась, изменяла свою структуру, с юности формировала ядро и оболочки. В настоящее время Земля имеет расплавленное железно-никелевое ядро. Вещества, содержащие более лёгкие элементы (кремний, магний, кальций и др.), постепенно поднимались вверх, образуя мантию и кору Земли. Самые лёгкие элементы вошли в состав океана и первичной атмосферы Земли. Состав атмосферы постепенно изменялся: улетучились самые лёгкие водород и гелий, в результате фотосинтеза появился кислород.

Эволюция атмосферы Земли имеет прямое отношение к тем условиям (температура, наличие воды), которые существуют на Земле сейчас и необходимы для развития жизни на нашей планете. На ближайших планетах Солнечной системы ситуация совершенно другая. На Земле есть вода, в атмосфере много кислорода, средняя температура +15о С. На Венере и Марсе сейчас свободной воды нет (на Марсе вода, возможно, есть в подповерхностном слое вечной мерзлоты), состав воздуха не пригоден для дыхания земных обитателей. Средняя температура на Марсе -60о С, на Венере +460° С.

Всегда ли было так? Не исключено, что в прошлом состав атмосферы на планетах земной группы был иным. В частности, большое значение могло иметь содержание углекислого газа, от которого во многом зависит парниковый эффект. Чем больше диоксида углерода в атмосфере, тем больше может разогреваться атмосфера и поверхность планеты в результате парникового эффекта. Углекислый газ, как и пары воды, пропускает солнечные лучи, но поглощает и переизлучает тепловое излучение поверхности Земли. Количество углекислого газа может изменяться за счёт поступления в атмосферу из карбонатных пород или вывода из неё. На Земле даже происходит длительный, порядка 500 тысяч лет, геохимический цикл, в ходе которого углекислый газ из атмосферы переходит в твёрдые породы, а потом из них снова в воздух. Такой цикл «работает» на Земле, а на Венере и на Марсе он нарушился. В результате этого Марс потерял возможность возвращать углекислый газ в атмосферу, а Венера - выводить его из атмосферы.

Планета, на которой мы живем - Земля, из космоса видна как небольшой голубой шар. Это уникальная планета, хотя бы потому, что именно на ней возникла, развилась до современных форм жизнь. Поэтому рассмотрим подробнее некоторые характеристики Земли.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то