Как сделать сталь в майнкрафте индастриал крафт. Как делают сталь. Зависимость свойств от состава и структуры

Сталь: виды, свойства, марки, производство

Сталь и изделия из неё настолько прочно вошли в жизнь и быт современного человека, что существование без металлических предметов трудно представить. Когда это касается посуды, мелких инструментов, бытовой техники и оборудования совсем не обязательно знать марку, классификацию сплавов, области их применения.

Эти сведения важны, скорее, для тех, кто решился приступить к строительству собственного жилья, и не знает какие металлоизделия подходят для этих целей. Итак, о том, что такое сталь, какие виды стали существуют, и какими свойствами обладает этот популярный на сегодняшнее время сплав, будет рассказано в строительном журнале .

Что такое сталь, и её отличие от чугуна

Железоуглеродистый сплав — это и есть всем известная сталь. Обычно доля углерода в сплаве варьируется от 0,1 до 2,14%. Увеличение концентрации углерода делает сталь хрупкой. Кроме основных компонентов в сплаве содержатся и небольшие количества магния, марганца и кремния, а так же вредных серных и фосфорных примесей.

По основным свойствам сталь и чугун очень схожи. Несмотря на это между ними существуют значительные различия:

  • сталь более прочный и твёрдый материал, нежели чугун;
  • чугун, несмотря на обманчивую массивность чугунных изделий, более лёгкий материал;
  • поскольку в составе стали ничтожно малый процент углерода, её легче обрабатывать. Для чугуна более предпочтительна отливка;
  • изделия из чугуна лучше сохраняют тепло, благодаря тому, что его теплопроводность значительно ниже чем у стали;
  • закалка металла, повышающая прочность материала, невозможна в отношении чугуна.

Достоинства и несовершенства стальных сплавов

Поскольку марок стали огромное количество, а изделий из неё ещё больше, то говорить о плюсах и минусах стали бессмысленно. Тем более, что свойства металла во многом зависят от технологий изготовления и обработки.

Вследствие этого можно только выделить несколько общих преимущественных особенностей стали, таких как:

  • прочность и твёрдость;
  • вязкость и упругость, то есть способность не деформироваться и выдерживать ударные, статические и динамические нагрузки;
  • доступность для разных способов обработки;
  • долговечность и повышенная износоустойчивость в сравнении с другими металлами;
  • доступность сырьевой базы, экономичность производственных технологий.

К сожалению, стали свойственны и некоторые минусы:

  • неустойчивость к коррозии, в том числе высокий уровень электрохимической коррозии;
  • сталь — тяжёлый металл;
  • изготовление изделий из стали производится в несколько этапов, нарушение технологии на любом из них приводит к снижению качества.

Сегодня сложно определить количество производимых и используемых стальных сплавов. Так же не просто их классифицировать, поскольку их свойства зависят от множества параметров, таких как состав, характер и количество добавок, способы изготовления и обработки, назначения и многих других.

По качеству принято различать обычные, качественные, высококачественные и особовысококачественные стали . Доля вредных примесей является основным критерием для определения качества сплава. Для обыкновенных сталей характерны более высокие значения доли примесей, чем для особовысококачественных сплавов.

Химический состав стали . В основу производства сплавов из железа положена его способность формировать различные структурные фазы при разных температурах, так называемый полиморфизм. Благодаря этой способности, растворённые в железе примеси, образуют сплавы различных составов. Принято делить стальные сплавы на углеродистые и легированные .

Сталь по определению является сплавом железа с углеродом, от концентрации которого зависят его свойства: твёрдость, прочность, пластичность, вязкость. В составе углеродистой стали практически не содержится дополнительных добавок.

Базовые примеси — марганец, магний, и кремний содержатся в минимальных количествах, и не ухудшают её свойств и качеств. Кремний и марганец оказывают на сплав раскисляющее действие, повышают упругость, износоустойчивость, жаростойкость. Но, в случае увеличения доли являются легирующими элементами. Стали с большим содержанием марганца теряют магнитные свойства.

Значительно более вредные для обоих видов сталей примеси серы и фосфора. Сера, соединяясь с железом, способствует повышению хрупкости при обработке высокими температурами (прокат, ковка), увеличению усталости, уменьшению устойчивости к коррозии.

Фосфор, особенно при большой доле углерода в сплаве, повышает его хрупкость в обычных температурных условиях. Кроме этого, существует целая группа скрытых, неудаляющихся во время плавки вредных примесей. Эти неметаллические включения в виде азота, водорода и кислорода при горячей обработке делают металл более рыхлым.

Углеродистые стали делятся на виды, которые характеризуются долей содержания углерода:

  • к высокоуглеродистым относятся сплавы с долей более 0,6 %;
  • в среднеуглеродистых сплавах концентрация углерода находится в пределах от 0,25 до 0,6 %;
  • допустимые значения, характерные для низкоуглеродистых сталей — не более 0,25 % .

Легированные стали подразделяются на:

— низколегированные, с долей легирующих добавок не более 2,5 %;

— среднелегированные, с долей дополнительных элементов до 10%;

— высоколегированные, в которых доля легирующих элементов составляет более 10%.

Легированные стали отличаются низкой концентрацией углерода и наличием различных легирующих добавок.

В соответствии с назначением стали делят на группы конструкционных, инструментальных и сталей особого назначения.

Каждая группа делится на подгруппы и виды, которые конкретизируют свойства, особенности и области применения сплавов.

К конструкционным сталям относятся:

  1. Строительные, их основное свойство — хорошая свариваемость, это низколегированные сплавы обычного качества.
  2. Для холодной штамповки используют прокат из низкоуглеродистых сплавов обычного качества.
  3. Цементуемые, применяются в изготовлении деталей с поверхностным истиранием.
  4. Высокопрочные характеризуются двойным порогом прочности относительно других конструктивных видов.
  5. Рессорно-пружинные стали с добавлением ванадия, брома, кремния, хрома и марганца, рассчитаны на длительное сохранение упругости.
  6. Шарикоподшипниковые стали с большой долей углерода и добавлением хрома, которым свойственны особая износоустойчивость, прочность и выносливость.
  7. Автоматные, в их составе присутствуют примеси серы, свинца, теллура и селена, облегчающие обработку станками — автоматами, на которых осуществляется производство массовых деталей
  8. Нержавеющие, к ним относятся сплавы с высоким содержанием хрома и никеля. Концентрация углерода в таких сплавах минимальна.

Виды инструментальной стали

Стали инструментального назначени я имеют несколько разновидностей:

  • Используемые в производстве режущих инструментов, к ним относятся некоторые виды углеродистой, легированной и быстрорежущей стали.
  • Измерительные инструменты производятся из достаточно твёрдых сплавов, обладающих износоустойчивостью и способностью к сохранению постоянных размеров, чаще всего для этого используют закалённую и цементированную сталь.
  • Для штамповой стали характерны твёрдость, термоустойчивость и прокаливаемость. Этот вид делится на подвиды, к которым относят валковые сплавы и стали для разнотемпературной обработки.

К сталям особого назначения относят марки сталей, которые применяются в конкретных производственных областях:

  • электротехнические стали — из них производят магнитные провода;
  • суперинвары — используют в производстве высокоточных приборов;
  • жаростойкие — работают при температурах более 900 °C;
  • жаропрочные — могут работать при высоких температурах в нагруженных состояниях.

Структура стали

Концентрация углерода в сплаве определяет не только свойства металла, но и его внутреннюю структуру. К примеру, мало- и среднеуглеродистые сплавы имеют структуру, состоящую из феррита и перлита. При увеличении доли углерода начинается формирование вторичного цементита. Легирование стали тоже меняет структуру сплава.

По структуре стали могут быть:

  • перлитными — с низким содержанием легирующих добавок;
  • мартенситными — стали, имеющие пониженную критическую скорость закалки и средний уровень содержания легирующих примесей;
  • аустенитными — высоколегированные сплавы, применяемые в агрессивных средах.

Отожженные стали делятся на:

  • доэвтектоидную сталь, с концентрацией углерода менее 0,8%;
  • заэвтектоидную сталь, состоящую из перлита и цементита, применяют как инструментальную;
  • карбидную (ледебуритную) — к ней относятся быстрорежущие стали;
  • ферритную — высоколегированную сталь с низким содержанием углерода.

Способы изготовления стали и технологии

От технологии изготовления стали зависят структура этого сплава, его состав и свойства. Обычные стали производятся в мартеновских печах или конвертерах. Как правило, они насыщены значительным количеством неметаллических примесей.

Высококачественные сплавы производят с использованием электропечей. Особовысококачественные легированные стали, содержащие минимальное количество вредных примесей, производятся в процессе электрошлаковой переплавки.

При производстве сталей используют процесс раскисления, направленный на выведение кислорода из структуры сплава. От количества удалённого кислорода зависит, какие получаются стали: малораскисленные, совершенно раскисленные или полураскисленные. Их классифицируют, как кипящие, спокойные и полуспокойные.

Марки стали

Несмотря на то, что сталь однозначно признаётся самым востребованным сплавом железа, единая система маркировки её видов по настоящее время не сложилась. Наиболее проста и популярна буквенно-численная маркировка.

Качественные углеродистые стали маркируют с использованием литеры «У» и двузначным числовым значением (в сотых %) уровня углерода в их составе (У11).В марке обычных углеродистых сталей за буквой следует число, указывающее на количество углерода в десятых % — У8.

Литеры используются и в маркировке легированных сталей. Они указывают на основной элемент, применяемый для легирования. Идущая следом цифра показывает концентрацию данного элемента в составе стали. Перед литерой ставят цифру, соответствующую доле углерода в металле в сотых %.

Например, стоящая в конце марки высококачественного сплава буква «А» указывает на его качество. Эта же литера в середине марки уведомляет об основном элементе легирования, в данном случае им является азот. Литера в начале марки сообщает о том, что это автоматная сталь.

Литера «Ш» в конце маркировки, прописанная через дефис, говорит о том, что это особовысококачественный сплав. Качественные стали, не имеют в маркировке литер «А» и «Ш». Кроме того, существует дополнительная маркировка, указывающая на особые характеристики сталей. Так, например, магнитные сплавы отмечают литерой «Е», а электротехнические — «Э».

Буквенно-числовая маркировка, пожалуй, одна из самых простых и понятных для потребителя. Другие, более сложные, доступны только для специалистов.

Желание сделать дамасскую сталь своими руками должно иметь под собой определенную целесообразность. Появление подобного материала объясняется довольно просто. В течение нескольких тысячелетий прогресс зависел от уровня развития оружейных технологий. Чтобы иметь легкое и прочное оружие изыскивались подходящие материалы. Можно махать тяжелым мечом, устрашая противника. Имея удобный меч небольшого веса, проще поразить противника, закованного в латы.

Даже рыцари крупных размеров (богатыри), одетые в доспехи, часто ничего не могли противопоставить юрким противникам, вооруженным легкими мечами, шпагами и палашами. Прочная и острая сталь находила изъяны в защите, проникала в стыки лат, нанося смертельные раны. Особая прочность позволяла изготавливать удобное оружие с небольшой массой.

Булат и Дамаск

Рисунок дамасской стали на спиле металла:

Термин дамасская сталь появился сравнительно недавно. В разных источниках стало появляться подобное наименование кованого изделия в середине XIX века. До этого чаще использовалось наименование «Гурда», так называли творения кузнецов с Кавказа и Междуречья. Там стали ковать изделия из смеси сплавов, добиваясь необычного рисунка на поверхности клинков.

Булат, как свидетельствуют исторические исследования, пришел из Индии. В музеях истории сохранились образцы оружия, где применялись литейные заготовки из легированной стали. Чаще всего в них присутствует хром, концентрация которого может достигать до 14 %.

Однако булатное производство рассчитано только на индивидуальный выпуск продукции. Поэтому технология довольно затратная. Мастер тратит много времени для изготовления определенного образца. Если заходит разговор о массовом производстве, то не рассчитывают на сложную технологию.

Только Златоустовский оружейный завод (единственное крупное предприятие) производит булатные клинки. По специальному заказу выпускают изделия дамасской стали. Цены на товар высокие, но имеется стабильный спрос на продукцию не только внутри России, но и за рубежом.

Изучением технологии производства и созданием промышленных технологий занимался металлург Павел Петрович Аносов. Результаты его работы присутствуют во всех учебниках по металловедению и кузнечному делу.

Современный булат в изделиях – реплика ножа НР-40 в современном исполнении, изготавливается на заказ:

Во время Великой Отечественной войны завод выпускал армейские ножи и шашки для кавалерии. Достаточно много экземпляров оружия с той поры реализуется в настоящее время на различных интернет ресурсах. Современные кузнецы производят новодел (так называют изделия, которые выполняются по образу и подобию старинных образцов). Несколько сотен мастерских предлагают копии, которые трудно отличить от оригинала.

Нож разведчика НР-40, изготовленный в 1942 г. – их выпустили более 7 млн. экземпляров:

Судя по количеству предложений и ценам, можно сделать вывод, что индивидуальный товар пользуется стабильным спросом. Производство изделий из булата и дамасской стали может быть довольно интересным и прибыльным бизнесом.

Современный нож НР-40, изготовленный по образцам периода Великой Отечественной войны:

Отличие булата от дамасской стали специалисты видят в исходном сырье:

  1. Булат – это сплав, в котором присутствует значительное количество легирующих элементов, при последующей кузнечной обработке методом кузнечной сварки соединяют платины, которые придают изделию комплекс новых свойств.
  2. Дамаск – это механическое соединение металлических заготовок, разнящихся по своим свойствам. Выполняется проковка до нескольких десятков слоев.

Использование качественной стали в изделиях

Не только оружие нуждается в прочных материалах. Конструкционные материалы с особыми свойствами используются в самых разных отраслях промышленности.

Кованые изделия работают в автомобилях, на железнодорожном транспорте, в сельскохозяйственных машинах, на космических кораблях. Используется только весьма упрощенная технология. Ковкой добиваются получения мелкого зерна в строении металла. Устраняются возможные раковины, которые присутствуют в отливках.

Образец современного клинка с выраженным рисунком:

Для дамасской стали отмечают плюсы и минусы.

Положительные характеристики

  • Высокая прочность изделия, выдерживает нагрузку, приложенную в разных направлениях (сжимающую, растягивающую, изгибающую и другие виды нагружений).
  • Износостойкость режущей кромки, долго держит остроту.
  • Имеет необычный внешний вид, невозможно повторить рисунок на аналогичном предмете, делает его узнаваемым.
  • Высокая стоимость при реализации.

Специальный вид дамасской стали, изготовленной из троса:

Перечисленные плюсы часто привлекают мастеров заниматься производством по технологии многократной проковки заготовок. Для каждой новой партии товара могут использоваться свои способы и последовательность ковки.

Недостатки

Главный недостаток – это высокие затраты труда на производство изделия. Приходится прибегать к многократному нагреванию заготовки.

Высокоуглеродистая сталь подвержена коррозии. На вопрос: «Ржавеет ли?» Можно ответить однозначно, что без надлежащего ухода ржавчина быстро уничтожает изделие.

Даже в домашних условиях желательно регулярно ухаживать за предметами из дамасской стали. Их протирают растительными или минеральными маслами, а потом сухой ветошью снимают излишки. Оригинальное оружие обрабатывают не реже одного раза в год. Тогда оно сохраняется надолго.

Финка из дамасской стали, современное изделие:

Оснащение мастерской для производства изделий

В мастерской домашнего мастера, желающего заняться изготовлением изделий из дамасской стали, нужно иметь:

  1. Сварочный аппарат – с его помощью пластины из материалов различной прочности свариваются в единый блок, которые можно обрабатывать совместно.
  2. Горн – в нем выполняется нагрев заготовок из готовых предметов до высоких значений температуры (более 800 ⁰С).
  3. Наковальня нужна для ковки. Методом деформации производится кузнечная сварка, меняется форма детали на разных стадиях обработки.
  4. Набор молотков и молотов помогает наносить удары с разной силой. Когда работают вдвоем, то ведущий кузнец ударами легкого молотка показывает подручному места для нанесения ударов тяжелым молотом.
  5. Тиски используют для фиксации заготовок на разных этапах работы.
  6. Сверлильный станок необходим для сверления отверстий.
  7. Заточной станок используется чаще остальных, на нем изделиям придают форму и остроту.
  8. Гриндер – это вариант заточного станка, отличительная особенность заключается в использовании ленты с абразивным покрытием, склеенной в кольцо. С помощью гриндера формируют ровные спуски под заданным углом.
  9. Станок для изготовления спусков. Качественная заточка до бритвенной остроты возможна только на специальном приспособлении, которое позволяет двигаться по строго определенной траектории.
  10. Болгарка набором отрезных и зачистных дисков. Простой инструмент оказывает помощь при выполнении самых разных видов действий.

Заточка клинка на гриндере:

Кроме основного набора станков и приспособлений, многие мастера дополнительно используют деревообрабатывающее оборудование. Оно помогает изготавливать ручки из прочных пород древесины. Небольшие токарные станки помогают создавать сложную фурнитуру, которая украшает готовые предметы.

Самодельный миниатюрный гриндер, стачивание спусков:

В мастерских, производящих качественные ножи, имеются вальцы. На них разогретые заготовки прокатывают с целью получения пластины определённой толщины. Дамасская сталь своими руками получается после многократной ковки и проката через вальцы.

Наличие кривошипного молота помогает проковывать заготовку серией многочисленных ударов. Пневматический или гидравлический пресс используют для объемного обжатия металла. Одним движением придается нужная геометрия.

У некоторых мастеров имеются матрицы и пуансоны, которые позволяют методом пластической деформации придавать стандартную форму, например, продавливать дол на клинке (используют для придания жесткости с одновременным снижением массы).

Заготовки для производства булата

Сделать булатную сталь несложно, для его производства используют стали и сплавы с заранее заданными свойствами. Применяют готовые изделия и специальные слитки. Кузнечные мастерские пользуются металлическим ломом или деталями, приобретаемыми в торговой сети. В таблице приведены материалы, которые чаще всего применяют для изготовления кованых предметов.

Пошаговая технология изготовления булата из подшипника

Изделия из готовых слитков или заготовок производятся в следующей последовательности.

Внутреннее кольцо подшипника изготовлено из сплава ШХ-15. Его распиливают отрезным диском болгарки, направляют на прогрев в горн. Желательная температура прогрева 900…950 ⁰С.

На наковальне удерживают заготовку кузнечными щипцами. Отбивая молотком выпуклости, из кольца формируют полосу.

Убирают впадины с полосы.

На гриндере придают нужную форму.

С помощью специальной оправки удерживают заготовку. Постоянный угол позволяет с обеих сторон создать одинаковые спуски.

Окончательная форма изделия получается путем обтачивания.

Паста ГОИ и вспомогательный бархатный валик помогают отполировать поверхность.

После полировки получается готовый клинок. Остается изготовить ручку, больстер и ножны. Тогда изделие можно считать законченным.

Заготовки для производства Дамаска

Сделать дамасскую сталь в домашних условиях может любой мастер, для этого применяют наборы сплавов. В них присутствуют мягкие и твердые включения. Комбинируя их между собой, добиваются получения клинков с выраженными структурными узорами.

Используются следующие комбинации, показанные в таблице. Некоторые мастерские предлагают и свои варианты. Предлагаемые схемы дают наилучшие показатели.


Начиная производство в собственной мастерской, узнать, сколько стоит готовое изделие, несложно. На многих сайтах интернет-магазинов указаны цены. По мере приобретения опыта и повышения качества товара, можно повышать цену на свою продукцию.

Видео: как сделать дамасскую сталь?

Пошаговая инструкция изготовления ножа из троса и полосы от напильника

Дамасскую сталь и изделие из нее изготовить сложнее. Но готовый образец будет иметь более привлекательный вид. Ниже приведена последовательность изготовления клинка.

Из нескольких отрезков троса готовят заготовки. Их сваривают с помощью стержней из нержавеющей стали. Трос представляет собой жесткий металл, а нержавейка – это мягкий, пластичный материал.

Перед началом работ производится промывка. Используется в дизельном топливе. Желательно вымыть имеющиеся органические включения.

В муфельной печи производится первичный обжиг.

Бура помогает избавиться от окалины. При высокой температуре шлак не будет задерживаться внутри заготовки.

Первая очищающая ковка. Несильные удары. Нужно механическим путем вытряхнуть возможные шлаки, тогда не будут образовываться раковины.

Ковка с помощью легкого молотка позволяет придать прямоугольную форму. Сначала уплотняется поверхностный слой.

Ковка тяжелым молотом ведется для уплотнения всего внутреннего пространства. Задача этой операции – получить монолитное изделие.

На автомате создают полосу нужного размера. Теперь заготовка по своим параметрам превращается в пластину.

После проковки на автомате на заготовке проявляется желаемый рисунок.

Если не устраивает внешний вид, то можно перековать. Умелые мастера часто перековывают пластину несколько раз, а потом выполняют перекручивание заготовки. Тогда образуются оригинальные звезды.

Приваривается будущая режущая кромка. Для нее используется полоса от напильника, в которой использована сталь У10. На кромке твердость составить HRC 60…63. Остальная часть лезвия останется пластичной.

На тяжелом прессе 120 т производится ковка рукоятки.

Клинок приобретает нужную форму. Нагрев более 900 ⁰С делает металл весьма пластичным.

Отковывается рукоять.

Готовая поковка уже имеет довольно привлекательный вид. Нужно стачивать спуски, чтобы были образованы режущие кромки.

Спуски сточены. Клинок готов для дальнейшей работы. Самая трудоемкая часть работы выполнена.

Рисунок на лезвии показывает, что изделие изготовлено из дамасской стали.

Варианты клинка. Ни один из них никогда не повторится. Каждый будет иметь только ему присущую структуру. С помощью кислоты добиваются проявления более глубокого рисунка.

Еще возможный вариант. Если на стадии сварки будущих элементов изменять толщину троса и нержавейки, то можно получать каждый раз новые виды дамаска.

Используя иные материалы, можно создавать и другие виды клинков.

, быстрорежущая)

Чугуны

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор , амортизаторов , силовых пружин различного назначения, в приборостроении - для многочисленных упругих элементов: мембран, пружин, пластин реле , сильфонов , растяжек, подвесок.

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении - релаксационной стойкостью .

История стали

Самые ранние известные образцы стали были обнаружены при раскопках в Анатолии (Турция). Им около 3800 лет, они датируются 1800 годом до нашей эры. Высокой репутацией в древности пользовалась индийская сталь. От индийской стали происходит средневековый булат , широко известный в Средней Азии и Восточной Европе . Сталь научились производить в конце эпохи Античности и в Западной Европе. По определённым показателям (упругость) именно из стали изготавливался испанский копис . Сталь позволила сделать акцент с колющего момента на режущий и перейти к сабле (через палаш). В эпоху Средневековья сталь широко применялась для изготовления холодного оружия (Романский меч , Мечи Ульфберта). На Ближнем Востоке была известна дамасская сталь , из которой ковался шамшир . В средневековой Японии из стали-Тамахаганэ изготавливались знаменитые катана , вакидзаси и танто . Существует версия, что японские мечи XI-XIII веков создавались из легированной стали с примесью молибдена . В Европе сталь позволила удлинить мечи, которые впоследствии эволюционировали в шпагу (в XV веке) и рапиру.

Технологию литой стали изобретает английский инженер Гентсман , однако в континентальную Европу она проникает лишь в начале XIX века (благодаря Круппу). Нарезная артиллерия с 1854 года изготовлялась из стали (Пушка Армстронга). В XX веке из стали начали изготовлять танковую броню . В армии Кайзеровской Германии времен Первой мировой войны появились стальные шлемы (Штальхельм)

Классификация сталей

Существует множество способов классификации сталей, таких как по назначению, по химическому составу, по качеству, по структуре.

По назначению стали делятся на множество категорий, таких как конструкционные стали, коррозионно стойкие (нержавеющие) стали, инструментальные стали, жаропрочные стали, криогенные стали.

По химическому составу стали делятся на углеродистые и легированные ; в том числе по содержанию углерода - на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3-0,55 % С) и высокоуглеродистые (0,6-2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные - до 4 % легирующих элементов, среднелегированные - до 11 % легирующих элементов и высоколегированные - свыше 11 % легирующих элементов.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений . Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь разделяется на аустенитную , ферритную , мартенситную , бейнитную и перлитную . Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Характеристики стали

  • Коэффициент линейного теплового расширения при температуре около 20 °C:
  • Предел прочности стали при растяжении:

Способ производства

Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей - фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конвертерный, мартеновский и электротермический.

Технология производства стали

Передельный или литейный чугун в расплавленном или твёрдом виде и железосодержащие изделия, полученные прямым восстановлением (губчатое железо), составляют вместе с металлическими отходами и ломом исходные материалы для производства стали. К этим материалам добавляются некоторые шлакообразующие добавки, такие как известь, плавиковый шпат, раскислители (например, ферромарганец, ферросилиций, алюминий) и различные легирующие элементы.

Процессы производства стали делятся на два основных способа, а именно: конвертерный процесс, в котором расплавленный передельный чугун в конвертере рафинируют от примесей, продувая его кислородом, и подовый процесс, для осуществления которого используются мартеновские или электрические печи.

Конвертерные процессы не требуют внешнего источника тепла. Они применяются в том случае, когда загрузка состоит главным образом из расплавленного передельного чугуна. Окисление некоторых элементов, присутствующих в чугуне (например, углерода, фосфора, кремния и марганца), обеспечивает достаточно тепла, чтобы удерживать сталь в жидком состоянии и даже переплавить добавленный лом. Эти процессы включают в себя такие, при которых чистый кислород вдувается в расплавленный металл (процессы Линца - Донавица: ЛД или ЛДАС, ОБМ, ОЛП, Калдо и другие), и такие процессы, ныне уже устаревшие, при которых используется воздух, иногда обогащённый кислородом (томасовский и бессемеровский процессы).

Подовые процессы, однако, требуют внешнего источника тепла. Они применяются, когда исходным материалом служит твёрдая шихта (например, отходы или лом, губчатое железо и твёрдый передельный чугун). Двумя основными процессами в этой категории являются мартеновский процесс, при котором нагрев осуществляется при сжигании мазута или газа, и сталеплавильные процессы в дуговых или индукционных печах, где нагрев осуществляется электричеством.

Для производства некоторых видов стали могут быть последовательно использованы два различных процесса (дуплекс-процесс). Например, процесс плавки может начаться в мартеновской печи, а закончиться в электропечи; или же сталь, расплавленная в электропечи, может быть слита в специальный конвертер, где обезуглероживание завершается путём вдувания кислорода и аргона в жидкую ванну (процесс, используемый, например, для производства коррозионностойкой стали).

Возникло много новых процессов производства сталей специального состава или со специальными свойствами. Эти процессы включают дуговой переплав в вакууме, электронно-лучевую плавку и электрошлаковый переплав. Во всех этих процессах сталь получается из переплавляемого электрода, который при плавлении начинает капать в кристаллизатор. Кристаллизатор может быть изготовлен цельным, или его днище может быть отъёмным для того, чтобы затвердевшую отливку можно было вынуть снизу.

Жидкая сталь, полученная вышеописанными процессами, с дальнейшим рафинированием или без него, сливается в ковш. На этом этапе в неё могут быть добавлены легирующие элементы или раскислители. Процесс также можно провести в вакууме, что обеспечивает снижение содержания газообразных примесей в стали. Стали, полученные этими процессами, подразделяются в соответствии с содержанием в них легирующих элементов на «нелегированные стали» и «легированные стали» (коррозионностойкие стали или другие виды). Далее они подразделяются в соответствии с их индивидуальными свойствами, например, на автоматную сталь, кремнистую электротехническую сталь, быстрорежущую сталь или кремнемарганцовистую сталь.

Кислородно-конвертерный способ получения стали

По этому способу окисления избыток углерода и других примесей чугуна окисляют кислородом, который продувают сквозь расплавленный чугун под давлением в специальных печах - конвертерах. Конвертер представляет собой грушевидную стальную печь, футерованную внутри огнеупорным кирпичом. Он может поворачиваться вокруг своей оси. Ёмкость конвертера 50-60 . Материалом его футеровки служит либо динас (в состав которого входят главным образом SiO 2 , имеющий кислотные свойства), либо доломитная масса (смесь CaO и MgO), которые получают из доломита MgCO 3 ·CaCO 3 . Эта масса имеет основные свойства. В зависимости от материала футеровки печи конвертерный способ разделяют на два вида: бессемеровский и томасовский.

Бессемеровский способ

Бессемеровским способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2 %). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300 °C быстро поднимается до 1500-1600° С. Выгорание 1 % Si обусловливает повышение температуры на 200 °C. Около 1500 °C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

  • Si + O 2 = SiO 2
  • 2 C + O 2 = 2 CO
  • 2 Fe + O 2 = 2 FeO

Образующийся монооксид железа FeO хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO 2 и в виде силиката железа FeSiO 3 переходит в шлак:

  • FeO + SiO 2 = FeSiO 3

Фосфор полностью переходит из чугуна в сталь, так P 2 O 5 при избытке SiO 2 не может реагировать с основными оксидами, поскольку SiO 2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.

Все процессы в конвертере идут быстро - в течение 10-20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащённым кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, в виде пузырьков газа поднимается вверх, сгорая над поверхностью расплава с образованием над горловиной конвертера факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворённого монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно раскислить с помощью различных раскислителей - ферросилиция, ферромарганца или алюминия:

  • 2 FeO + Si = 2 Fe + SiO 2
  • FeO + Mn = Fe + MnO
  • 3 FeO + 2Al = 3 Fe + Al 2 O 3

Монооксид марганца MnO как основной оксид реагирует с SiO 2 и образует силикат марганца MnSiO 3 , который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не слишком распространён, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорание металла, и выход стали составляет лишь 90 % от массы чугуна, а также расходуется много раскислителей. Серьёзным недостатком является невозможность регулирования химического состава стали.

Бессемеровская сталь содержит обычно менее 0,2 % углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа и т. п.

В настоящее время этот процесс является устаревшим.

Томасовский способ

Томасовским способом перерабатывают чугун с большим содержанием фосфора (более 2 %). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.

В этих условиях фосфатный ангидрид P 2 O 5 , который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция, переходит в шлак:

  • 4 P + 5 O 2 = 2 P 2 O 5
  • P 2 O 5 + 3 CaO = Ca 3 (PO 4) 2

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертера поднимается на 150 °C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции

  • FeS + CaO = FeO + CaS

Все последние процессы происходят так же, как и при бессемеровском способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовская сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа и т. п.

В СССР Томасовский способ применяли для переработки фосфористого чугуна с керченского бурого железняка. Получаемый при этом шлак содержит до 20 % P 2 O 5 . Его размалывают и применяют как фосфорное удобрение на кислых почвах.

Метод является устаревшим и в настоящее время практически вытеснен из производства.

Мартеновская печь

Мартеновский способ отличается от конвертерного тем, что выжигание избытка углерода в чугуне происходит не только за счёт кислорода воздуха, но и кислорода оксидов железа, которые добавляются в виде железной руды и ржавого железного лома.

Мартеновская печь состоит из плавильной ванны, перекрытой сводом из огнеупорного кирпича, и особых камер регенераторов для предварительного подогрева воздуха и горючего газа. Регенераторы заполнены насадкой из огнеупорного кирпича. Когда первые два регенератора нагреваются печными газами, горючий газ и воздух вдуваются в печь через раскаленные третий и четвёртый регенераторы. Через некоторое время, когда первые два регенератора нагреваются, поток газов направляют в противоположном направлении и т. д.

Плавильные ванны мощных мартеновских печей имеют длину до 16 м, ширину до 6 м и высоту более 1 м. Вместимость таких ванн достигает 500 т стали. В плавильную ванну загружают железный лом и железную руду. К шихте добавляют также известняк как флюс. Температура печи поддерживается при 1600-1700 °C и выше. Выгорания углерода и примесей чугуна в первый период плавки происходит главным образом за счёт избытка кислорода в горючей смеси с теми же реакциями, что и в конвертере, а когда над расплавленным чугуном образуется слой шлака - за счёт оксидов железа:

  • 4 Fe 2 O 3 + 6 Si = 8 Fe + 6 SiO 2
  • 2 Fe 2 O 3 + 6 Mn = 4 Fe + 6 MnO
  • Fe 2 O 3 + 3 C = 2 Fe + 3 CO 
  • 5 Fe 2 O 3 + 2 P = 10 FeO + P 2 O 5
  • FeO + С = Fe + CO 

Вследствие взаимодействия основных и кислотных оксидов образуются силикаты и фосфаты, которые переходят в шлак. Сера тоже переходит в шлак в виде сульфида кальция:

  • MnO + SiO 2 = MnSiO 3
  • 3 CaO + P 2 O 5 = Ca 3 (PO 4) 2
  • FeS + CaO = FeO + CaS

Мартеновские печи, как и конвертеры, работают периодически. После разливки стали печь снова загружают шихтой и т. д. Процесс переработки чугуна в сталь в мартенах происходит относительно медленно в течение 6-7 часов. В отличие от конвертера, в мартенах можно легко регулировать химический состав стали, добавляя к чугуну железный лом и руду в той или иной пропорции. Перед окончанием плавки нагрев печи прекращают, сливают шлак, а затем добавляют раскислители. В мартенах можно получать и легированную сталь. Для этого в конце плавки добавляют к стали соответствующие металлы или сплавы.

В настоящее время работающие мартеновские печи сохранились только в России, Украине и Индии.

Электротермический способ

Электротермический способ имеет перед мартеновским и особенно конвертерным целый ряд преимуществ. Этот способ позволяет получать сталь очень высокого качества и точно регулировать её химический состав. Доступ воздуха в электропечь незначительный, поэтому значительно меньше образуется монооксида железа FeO, загрязняющего сталь и снижающего её свойства. Температура в электропечи - не ниже 1650 °C. Это позволяет проводить плавку стали на основных шлаках (которые трудно плавятся), при которой полнее удаляется фосфор и сера. Кроме того, благодаря очень высокой температуре в электропечах можно легировать сталь тугоплавкими металлами - молибденом и вольфрамом. Но в электропечах расходуется очень много электроэнергии - до 800 кВт·ч на 1 т стали. Поэтому этот способ применяют только для получения высококачественной спецстали.

Электропечи бывают разной ёмкости - от 0,5 до 180 т. Футеровку печи выполняют обычно из периклазо-углеродистого огнеупора, а свод печи из магнезито-хромитового огнеупора. Состав шихты может быть разный. Иногда она состоит на 90 % из железного лома и на 10 % из чугуна, иногда в ней преобладает чугун с добавками в определённой пропорции железной руды и железного лома. К шихте добавляют также известняк или известь как флюс . Химические процессы при выплавке стали в электропечах те же, что и в мартенах.

Свойства стали

Физические свойства

  • плотность ρ ≈ 7,86 г/см 3 ; коэффициент линейного теплового расширения α = (11…13)·10 −6 K −1 ;
  • коэффициент теплопроводности k = 58 Вт/(м·K);
  • модуль Юнга E = 210 ГПа;
  • модуль сдвига G = 80 ГПа;
  • коэффициент Пуассона ν = 0,28…0,30;
  • удельное электросопротивление (20 °C, 0,37-0,42 % углерода) = 1,71·10 −7 Ом·м.

Зависимость свойств от состава и структуры

Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих:

Стали содержат до 2,14 % углерода. Фундаментом науки о стали как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод - графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей - повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы, как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.

Обработка стали

Виды термообработки

Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путём деформирования (давления): ковать, вальцевать, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки, сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:

  • отжиг;
  • нормализация;
  • закалка;
  • отпуск.

Чем богаче сталь на углерод, тем она твёрже после закалки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддаётся.

Химико-термическая обработка сталей

Химико-термическая обработка сталей в дополнение к изменениям в структуре стали также приводит к изменению химического состава поверхностного слоя путём добавления различных химических веществ до определённой глубины поверхностного слоя. Эти процедуры требуют использования контролируемых систем нагрева и охлаждения в специальных средах. Среди наиболее распространённых целей, относящихся при использовании этих технологий, является повышение твёрдости поверхности при высокой вязкости сердцевины, уменьшение сил трения, повышение износостойкости, повышение устойчивости к усталости и улучшение коррозионной стойкости. К этим методам относятся:

  • Цементация (C) увеличивает твёрдость поверхности мягкой стали из-за увеличения концентрации углерода в поверхностных слоях.
  • Азотирование (N), как и цементация, увеличивает поверхностную твёрдость и износостойкость стали.
  • Цианирование и нитроцементация (N + C) - это процесс одновременного насыщения поверхности сталей углеродом и азотом. При цианировании используют расплавы солей, имеющих в своем составе группу NaCN, а при нитроцементации - смесь аммиака с газами, которые имеют в составе углерод (СО, СН 4 и др.). После цианирования и нитроцементации проводят закаливание и низкий отпуск.
  • Сульфатирование (S) - насыщение поверхности серой улучшает приработку трущихся поверхностей деталей, уменьшается коэффициент трения.

Разновидности некоторых сталей

Марки стали Термообработка Твёрдость (сердцевина-поверхность)
35 нормализация 163-192 HB
40 улучшение 192-228 HB
45 нормализация 179-207 HB
45 улучшение 235-262 HB
55 закалка и высокий отпуск 212-248 HB
60 закалка и высокий отпуск 217-255 HB
70 закалка и высокий отпуск 229-269 HB
80 закалка и высокий отпуск 269-302 HB
У9 отжиг 192 HB
У9 закалка 50-58 HRC
У10 отжиг 197 HB
У10 закалка 62-63 HRC
40Х улучшение 235-262 HB
40Х улучшение+закалка токами выс. частоты 45-50 HRC; 269-302 HB
40ХН улучшение 235-262 HB
40ХН 48-53 HRC; 269-302 HB
35ХМ улучшение 235-262 HB
35ХМ улучшение+закалка токами выс. частоты 48-53 HRC; 269-302 HB
35Л нормализация 163-207 HB
40Л нормализация 147 HB
40ГЛ улучшение 235-262 HB
45Л улучшение 207-235 HB

Производство стали

Производство стали в мире

Мировым лидером в производстве стали является Китай, доля которого по итогам 2017 года составила 49 %.

Всего в мире в 2015 году было выплавлено 1 620 млн тонн стали, в 2017 году объём мирового производства составил 1 691,2 млн тонн .

В десятку стран-лидеров по выплавке стали вошли :

Страна Выплавка в 2017 году, млн тонн
Китай 831,7
Япония 104,7
Индия 101,4
США 81,6
Россия 71,3
Южная Корея 71,1
Германия 43,6
Турция 37,5
Бразилия 34,4
Италия 24,0

Производство стали по континентам и регионам распределяется следующим образом:

Регионы мира 2011 год 2017 год
Азия 954 190 1 162 500
Европейский союз (27) 177 431 168 700
Северная Америка 118 927 116 000
СНГ (6) 112 434 102 100
Южная Америка 48 357 43 700
Прочая Европа 37 181
Ближний Восток 20 325
Африка 13 966
Океания 7 248
Всего в мире 1 490 060 1 691 200

2008 год

В 2008 году в мире было произведено 1 млрд 329,7 млн тонн стали, что на 1,2 % меньше, чем в 2007 г. Это стало первым сокращением годового объёма производства за последние 11 лет.

2009 год

По итогам первых шести месяцев 2009 года производство стали в 66 странах мира, доля которых в мировой сталелитейной отрасли составляет не менее 98 %, сократилось по сравнению с аналогичным периодом предыдущего года на 21,3 % - с 698,2 млн тонн до 549,3 млн тонн (статистика World Steel Association).

Китай увеличил производство стали относительно аналогичного периода 2008 года на 1,2 % - до 266,6 млн тонн, в Индии производство стали возросло на 1,3 % - до 27,6 млн тонн.

В США производство стали упало на 51,5 %, в Японии - на 40,7 %, в Южной Корее - на 17,3 %, в Германии - на 43,5 %, в Италии - на 42,8 %, во Франции - на 41,5 %, в Великобритании - на 41,8 %, в Бразилии - на 39,5 %, в России - на 30,2 %, в Украине - на 38,8 %.

В июне 2009 г. производство стали в мире составило 99,8 млн тонн, что на 4,1 % больше, чем в мае 2009 года.

Рейтинг ведущих мировых производителей стали

По данным Metal Bulletin’s Top Steelmakers of 2007 производство стали по компаниям производителям составило (в млн тонн):

2007 2006 Производитель Страна Производство в 2007 году Производство в 2006 году
1 1&2 ArcelorMittal Люксембург 116,40 117.98
2 3 Nippon Steel Япония 34,50 33,70
3 4 JFE Steel Япония 33.80 31.83
4 5 POSCO Ю. Корея 32,78 31,20
5 6 Shanghai Baosteel Китай 28,58 22,53
6 51 Tata Steel Индия 26,52 23,95
7 17 Jiangsu Shagang Китай 22,89 14,63
8 9 Tangshang Китай 22,75 19,06
9 7 US Steel США 20,54 21,25
10 18 Wuhan Китай 20.19 13.76
11 8 Nucor США 20,04 20,31
12 11 Riva Италия 17,91 18,19
13 15 Gerdau Group Бразилия 17,90 15,57
14 13 ThyssenKrupp Германия 17,02 16,80
15 12 Северсталь Россия 16,75 17,60
16 14 Евраз Россия 16,30 16,10
17 16

)
Высокоуглеродистая сталь (до ~2 % )

(инструментальная , штамповая , пружинная , быстрорежущая)

Чугуны

Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь), содержащий не менее 45 % железа.

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении - для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении - релаксационной стойкостью .

Энциклопедичный YouTube

Классификация

Существует множество способов классификации сталей, таких как по назначению, по химическому составу, по качеству, по структуре.

По назначению стали делятся на множество категорий, таких как конструкционные стали, коррозионно стойкие (нержавеющие) стали, инструментальные стали, жаропрочные стали, криогенные стали.

По химическому составу стали делятся на углеродистые и легированные ; в том числе по содержанию углерода - на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3-0,55 % С) и высокоуглеродистые (0,6-2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные - до 4 % легирующих элементов, среднелегированные - до 11 % легирующих элементов и высоколегированные - свыше 11 % легирующих элементов.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений . Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь разделяется на аустенитную , ферритную , мартенситную , бейнитную и перлитную . Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Характеристики стали

  • Коэффициент линейного теплового расширения при температуре около 20 °C:
  • Предел прочности стали при растяжении:

Производство стали

Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей - фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический.

Технология производства стали

Передельный или литейный чугун в расплавленном или твердом виде и железосодержащие изделия, полученные прямым восстановлением (губчатое железо), составляют вместе с металлическими отходами и ломом исходные материалы для производства стали. К этим материалам добавляются некоторые шлакообразующие добавки, такие как известь, плавиковый шпат, раскислители (например, ферромарганец, ферросилиций, алюминий) и различные легирующие элементы. Процессы производства стали делятся на два основных способа, а именно: конвертерный процесс, в котором расплавленный передельный чугун в конвертере рафинируют от примесей, продувая его кислородом, и подовый процесс, для осуществления которого используются мартеновские или электрические печи. Конвертерные процессы не требуют внешнего источника тепла. Они применяются в том случае, когда загрузка состоит главным образом из расплавленного передельного чугуна. Окисление некоторых элементов, присутствующих в чугуне (например, углерода, фосфора, кремния и марганца), обеспечивает достаточно тепла, чтобы удерживать сталь в жидком состоянии и даже переплавить добавленный лом. Эти процессы включают в себя такие, при которых чистый кислород вдувается в расплавленный металл (процессы Линца-Донавица: ЛД или ЛДАС, ОБМ, ОЛП, Калдо и другие), и такие процессы, ныне уже устаревшие, при которых используется воздух, иногда обогащенный кислородом (томасовский и бессемеровский процессы). Подовые процессы, однако, требуют внешнего источника тепла. Они применяются, когда исходным материалом служит твердая шихта (например, отходы или лом, губчатое железо и твердый передельный чугун).

Двумя основными процессами в этой категории являются мартеновский процесс, при котором нагрев осуществляется при сжигании мазута или газа, и сталеплавильные процессы в дуговых или индукционных печах, где нагрев осуществляется электричеством. Для производства некоторых видов стали могут быть последовательно использованы два различных процесса (дуплекс-процесс). Например, процесс плавки может начаться в мартеновской печи, а закончиться в электропечи; или же сталь, расплавленная в электропечи, может быть слита в специальный конвертер, где обезуглероживание завершается путём вдувания кислорода и аргона в жидкую ванну (процесс, используемый, например, для производства коррозионностойкой стали).

Возникло много новых процессов производства сталей специального состава или со специальными свойствами. Эти процессы включают дуговой переплав в вакууме, электронно-лучевую плавку и электрошлаковый переплав. Во всех этих процессах сталь получается из переплавляемого электрода, который при плавлении начинает капать в кристаллизатор. Кристаллизатор может быть изготовлен цельным или его днище может быть отъемным для того, чтобы затвердевшую отливку можно было вынуть снизу. Жидкая сталь, полученная вышеописанными процессами, с дальнейшим рафинированием или без него, сливается в ковш. На этом этапе в неё могут быть добавлены легирующие элементы или раскислители. Процесс также можно провести в вакууме, что обеспечивает снижение содержания газообразных примесей в стали. Стали, полученные этими процессами, подразделяются в соответствии с содержанием в них легирующих элементов на "нелегированные стали" и "легированные стали" (коррозионностойкие стали или другие виды). Далее они подразделяются в соответствии с их индивидуальными свойствами, например, на автоматную сталь, кремнистую электротехническую сталь, быстрорежущую сталь или кремнемарганцовистую сталь.

Кислородно-конверторный способ получения стали

По этому способу окисления избыток углерода и других примесей чугуна окисляют кислородом, который продувают сквозь расплавленный чугун под давлением в специальных печах - конверторах. Конвертер представляет собой грушевидную стальную печь, футерованную внутри огнеупорным кирпичом. Он может поворачиваться вокруг своей оси. Ёмкость конвертора 50-60 т. Материалом его футеровки служит либо динас (в состав которого входят главным образом SiO 2 ; имеющий кислотные свойства), или доломитная масса (смесь CaO и MgO), которые получают из доломита MgCO 3 CaCO 3 . Эта масса имеет основные свойства. В зависимости от материала футеровки печи конверторный способ разделяют на два вида: бессемеровский и томасовский.

Бессемеровский способ

Бессемеровским способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2 %). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300 °C быстро поднимается до 1500-1600° С. Выгорания 1 % Si обусловливает повышение температуры на 200 °C. Около 1500 °C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

  • Si + O 2 = SiO 2
  • 2C + O 2 = 2CO
  • 2Fe + O 2 = 2FeO

Образующийся монооксид железа FeO хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO 2 и в виде силиката железа FeSiO 3 переходит в шлак:

  • FeO + SiO 2 = FeSiO 3

Фосфор полностью переходит из чугуна в сталь, так P 2 O 5 при избытке SiO 2 не может реагировать с основными оксидами, поскольку SiO 2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.

Все процессы в конверторе идут быстро - в течение 10-20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно раскислить с помощью различных раскислителей - ферросилиция, ферромарганца или алюминия:

  • 2FeO + Si = 2Fe + SiO 2
  • FeO + Mn = Fe + MnO
  • 3FeO + 2Al = 3Fe + Al 2 O 3

Монооксид марганца MnO как основной оксид реагирует с SiO 2 и образует силикат марганца MnSiO 3 , который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не слишком распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорание металла, и выход стали составляет лишь 90 % от массы чугуна, а также расходуется много раскислителей. Серьёзным недостатком является невозможность регулирования химического состава стали.

Бессемеровская сталь содержит обычно менее 0,2 % углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа и т. п.

Томасовский способ

Томасовским способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.

В этих условиях фосфатный ангидрид P 2 O 5 , который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция, переходит в шлак:

  • 4P + 5O 2 = 2P 2 O 5
  • P 2 O 5 + 3CaO = Ca 3 (PO 4) 2

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 °C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:

  • FeS + CaO = FeO + CaS

Все последние процессы происходят так же, как и при бессемеровском способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовская сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа и т. п.

В СССР Томасовский способ применяли для переработки фосфористого чугуна с керченского бурого железняка. Получаемый при этом шлак содержит до 20 % P 2 O 5 . Его размалывают и применяют как фосфорное удобрение на кислых почвах.

Мартеновская печь

Мартеновский способ отличается от конверторного тем, что выжигание избытка углерода в чугуне происходит не только за счет кислорода воздуха, но и кислорода оксидов железа, которые добавляются в виде железной руды и ржавого железного лома.

Мартеновская печь состоит из плавильной ванны, перекрытой сводом из огнеупорного кирпича, и особых камер регенераторов для предварительного подогрева воздуха и горючего газа. Регенераторы заполнены насадкой из огнеупорного кирпича. Когда первые два регенератора нагреваются печными газами, горючий газ и воздух вдуваются в печь через раскаленные третий и четвёртый регенераторы. Через некоторое время, когда первые два регенератора нагреваются, поток газов направляют в противоположном направлении и т. д.

Плавильные ванны мощных мартеновских печей имеют длину до 16 м, ширину до 6 м и высоту более 1 м. Вместимость таких ванн достигает 500 т стали. В плавильную ванну загружают железный лом и железную руду. К шихте добавляют также известняк как флюс. Температура печи поддерживается при 1600-1700 °C и выше. Выгорания углерода и примесей чугуна в первый период плавки происходит главным образом за счет избытка кислорода в горючей смеси с теми же реакциями, что и в конверторе, а когда над расплавленным чугуном образуется слой шлака - за счет оксидов железа

  • 4Fe 2 O 3 + 6Si = 8Fe + 6SiO 2
  • 2Fe 2 O 3 + 6Mn = 4Fe + 6MnO
  • Fe 2 O 3 + 3C = 2Fe + 3CO
  • 5Fe 2 O 3 + 2P = 10FeO + P 2 O 5
  • FeO + С = Fe + CO

Вследствие взаимодействия основных и кислотных оксидов образуются силикаты и фосфаты, которые переходят в шлак. Сера тоже переходит в шлак в виде сульфида кальция:

  • MnO + SiO 2 = MnSiO 3
  • 3CaO + P 2 O 5 = Ca 3 (PO 4) 2
  • FeS + CaO = FeO + CaS

Мартеновские печи, как и конверторы, работают периодически. После разливки стали печь снова загружают шихтой и т. д. Процесс переработки чугуна в сталь в мартенах происходит относительно медленно в течение 6–7 часов. В отличие от конвертора, в мартенах можно легко регулировать химический состав стали, добавляя к чугуну железный лом и руду в той или иной пропорции. Перед окончанием плавки нагрева печи прекращают, сливают шлак, а затем добавляют раскислители. В мартенах можно получать и легированную сталь. Для этого в конце плавки добавляют к стали соответствующие металлы или сплавы.

Электротермический способ

Электротермический способ имеет перед мартеновским и особенно конверторным целый ряд преимуществ. Этот способ позволяет получать сталь очень высокого качества и точно регулировать её химический состав. Доступ воздуха в электропечь незначительный, поэтому значительно меньше образуется монооксида железа FeO, загрязняющего сталь и снижающего её свойства. Температура в электропечи - не ниже 1650 °C. Это позволяет проводить плавку стали на сильно основных шлаках (которые трудно плавятся), при которой полнее удаляется фосфор и сера. Кроме того, благодаря очень высокой температуре в электропечах можно легировать сталь тугоплавкими металлами - молибденом и вольфрамом. Но в электропечах расходуется очень много электроэнергии - до 800 кВт·ч на 1 т стали. Поэтому этот способ применяют только для получения высококачественной спецстали.

Электропечи бывают разной ёмкости - от 0,5 до 180 т. Футеровку печи выполняют обычно из периклазо-углеродистого огнеупора, а свод печи из магнезито-хромитового огнеупора. Состав шихты может быть разный. Иногда она состоит на 90 % из железного лома и на 10 % из чугуна, иногда в ней преобладает чугун с добавками в определенной пропорции железной руды и железного лома. К шихте добавляют также известняк или известь как флюс. Химические процессы при выплавке стали в электропечах те же, что и в мартенах.

Свойства стали

Физические свойства

  • плотность ρ ≈ 7,86 г / см 3 ; коэффициент линейного теплового расширения α = 11 … 13 · 10 −6 K −1 ;
  • коэффициент теплопроводности k = 58 Вт / (м · K);
  • модуль Юнга E = 210 ГПа;
  • модуль сдвига G = 80 ГПа;
  • коэффициент Пуассона ν = 0,28 … 0,30;
  • удельное электросопротивление (20 °C, 0,37-0,42 % углерода) = 1,71 · 10 −7 Ом · м

Зависимость свойств от состава и структуры

Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих.

Регионы мира 2011 год
Азия 954.190
Европейский союз (27) 177.31
Северная Америка 118.927
СНГ (6) 112.434
Южная Америка 48.357
Прочая Европа 37.181
Ближний Восток 20.325
Африка 13.966
Океания 7.248
Всего в мире 1.490.060

2008 год

В 2008 году в мире было произведено 1 млрд 329,7 млн т. стали, что на 1,2 % меньше, чем в 2007 г. Это стало первым сокращением годового объёма производства за последние 11 лет.

2009 год

По итогам первых шести месяцев 2009 г. производство стали в 66 странах мира, доля которых в мировой сталелитейной отрасли составляет не менее 98 %, сократилось по сравнению с аналогичным периодом предыдущего года на 21,3 % - с 698,2 млн т до 549,3 млн т (статистика World Steel Association).

Китай увеличил производство стали относительно аналогичного периода 2008 года на 1,2 % - до 266,6 млн т. в Индии производство стали возросло на 1,3 % - до 27,6 млн т.

В США производство стали упало на 51,5 %, в Японии - на 40,7 %, в Южной Корее - на 17,3 %, в Германии - на 43,5 %, в Италии - на 42,8 %, во Франции - на 41,5 %, в Великобритании - на 41,8 %, в Бразилии - на 39,5 %, в России - на 30,2 %, на Украине - на 38,8 %.

В июне 2009 г. производство стали в мире составило 99,8 млн т., что на 4,1 % больше, чем в мае 2009 г.

Рейтинг ведущих мировых производителей стали

По данным Metal Bulletin’s Top Steelmakers of 2007 производство стали по компаниям производителям составило (в млн тонн):

2007 2006 Производитель Страна Производство в 2007 году Производство в 2006 году
1 1&2
0

Сравнивая химический состав чугуна и стали, видим, что чугун содержит больше примесей, главным образом углерода, кремния, марганца, серы и фосфора. Отсюда следует, что процессы получения стали из чугуна сводятся к понижению количества входящих в состав чугуна примесей. Ниже приводится химический состав одного из чугунов и параллельно состав полученной из него стали. Уменьшения количества примесей в чугуне достигают посредством окислительных процессов.

Таким образом, если примеси получили доступ в состав чугуна вследствие реакций восстановительного характера, то удаление их следует производить посредством реакций окислительных: например, марганец получил доступ в чугун в результате реакции

Для осуществления подобных окислительных реакций необходимо наличие окислов железа в расплавленном металле и соответствующей температуры.

Из чугуна сталь можно получить в тестообразном и жидком состоянии.

Существуют два способа передела чугуна в сталь в тестообразном состоянии: кричный и пудлинговый; первый является наиболее старым и в настоящее время не применяется.

Кричный процесс. Сущность кричного способа переработки чугуна заключается в том, что чугун расплавляют и перемешивают в горне со шлаками, богатыми окислами железа; под действием кислорода шлаков и дутья углерод, кремний и марганец выгорают.

Вследствие уменьшения примесей температура плавления металлической массы повышается и она густеет. Осевшую на поду горна металлическую массу выворачивают и подвергают вторичному плавлению. В результате на дне горна получается ком из спекшихся зерен железа, называемый крицей. Крицу извлекают из горна и проковывают для придания ей требуемой формы и отжатия застрявшего в порах жидкого железистого шлака.

Пудлинговый процесс. Пудлинговый способ передела чугуна в сталь является наиболее старым после кричного. Сущность зтого способа заключается в том, что чугун расплавляют в отражательных печах, подина которых изготовлена из шлаков, богатых окислами железа. В результате воздействия окислов железа и кислорода, содержащегося в печных газах, углерод и другие примеси выгорают из чугуна.

Важным отличием пудлингового процесса от кричного является то, что в пудлинговом процессе топливо сжигается в отдельной топке, не смешиваясь с металлом, и потому чистота топлива не имеет решающего значения.

Пудлинговый процесс изобретен в конце XVIII в. и был до второй половины XIX в. почти единственным способом переработки чугуна в заводском масштабе. В настоящее время пудлинговый способ вытеснен конвертерным и способом производства литой стали в пламенных регенераторных печах.

Схема устройства пудлинговой печи показана на фиг. 13.

Чугун вместе со шлаками, богатыми окислами железа (12 - 20% SiO 2 . 50 - 60% FeO, 5 - 20% Fe 2 O 3), загружают в окно 4.

Печь обогревается за счет сгорания топлива, загружаемого на колосниковую решетку 1 через окно 2. Чугун плавится, и содержащиеся в нем примеси вступают в соединение с кислородом железных окислов и топочных газов.

Образующаяся в результате окисления углерода окись углерода улетучивается вместе с продуктами горения и удаляется из печи по дымоходу 5, а продукты окисления железа, кремния, марганца и фосфора (FeO, Si0 2 , MnO и Р 2 0 5) образуют шлак пудлинговой печи.

Находящийся в ванне 3 чугун для ускорения процесса окисления входящих в него примесей перемешивают.

Так как температура плавления железа близка к 1500°, а температура плавления чугуна 1150-1250° и так как в пудлинговой печи температуру нельзя поднять выше 1300-1400°, то металлическая масса по мере хода процесса пудлингования, становясь более тугоплавкой, начинает густеть и из нее начинают выпадать на подину зерна металла. Готовый продукт находится в тесто- образном состоянии и может быть извлечен из печи в виде кома спекшихся зерен железа, пропитанного шлаками; этот ком носит название крицы. Для удаления шлаков крицу обжимают под прессом или подвергают проковке.

Пудлинговые печи невелики: длина ванны около 2 м, ширина - около 1,5 ж; суточная производительность 5-10

Продолжительность процесса пудлингования 1 1 / 2 -2 1 / 2 часа. Угар металла при пудлинговании, слагающийся из потерь углерода в виде газообразного окисла и компонентов чугуна Si, Мn и Р и отчасти Fe в виде окислов в шлаке, составляет от 6 до 15%. Расход топлива - от 80 до 120% веса готового металла, в печах без регенерации; в печах регенераторных - 50-60%.

и последующего растворения восстановленного марганца в железе, а удаление его из чугуна вызывается реакцией

Полученная путем пудлингования сталь не содержит растворенного кислорода (в виде FeO), примесь которого сильно ухудшает механические качества стали, сообщая ей хрупкость; в этом отношении пудлинговая сталь выгодно отличается от литой стали, получаемой конвертерными и другими способами.

Однако отличительной чертой пудлинговой стали является загрязненность ее неметаллическими включениями из богатых окислами железа шлаков.

Наличие шлаков в стали снижает ее механические качества; чем больше загрязнение шлаком, тем качество металла ниже; однако шлаковые включения в хорошо обжатой пудлинговой стали, вытягиваясь при обжимке криц вдоль волокон металла, не оказывают вредного влияния на его механические качества (особенно вдоль волокон).

Кроме отсутствия растворенного кислорода, в пудлинговой стали отсутствуют и другие недостатки, неизбежные при получении слитков из жидкого металла, - пузыри, трещины и усадочные раковины.

Так как пудлинговую сталь для возможно полного удаления шлаков подвергают вытягиванию в полосы с последующей многократной сваркой, то ее называют сварочной.

Высокие качества сварочной стали заставили искать способов к увеличению производительности пудлинговых печей и механизации работы на них.

На фиг. 14 показана вращающаяся пудлинговя печь, обогреваемая печью 1.

Боровок 3 состоит из двух частей - подвижной, подвешенной (примыкающей к барабану 2) и неподвижной, соединенной с дымовой трубой. Загрузку печи производят со стороны борова, для чего подвижную часть его отводят в сторону. При таком устройстве печи ручное перемешивание металла заменяют механическим - перемешивание здесь производится вращением барабана.

Производительность таких печей достигает 16 т в сутки.

С 1930 г. начали применять новый способ получения сварочного железа, заключающийся в следующем:

1) жидкий чугун, расплавленный в вагранке или взятый непосредственно из доменной печи, продувают в бессемеровском конвертере до мягкого металла;

последний медленно выливают в ванну с жидким шлаком состава: 70-75% FeO; 5-10% Fe 2 O 3 ; около 2% МnО; 10- 12% SiO 2 ; около 2% Р 2 O 5 ; около 2% Аl 2 O 3 ; около 2% (CaO+MgO). Температура металла- 1600°, температура шлака ~ 1300°. Объем металла в 6-8 раз меньше объема шлака;

2) соприкасаясь со шлаком, металл охлаждается; одновременно вследствие присутствия в шлаке окислов железа происходит выгорание оставшихся в металле примесей (например, количество углерода снижается до 0,02%);

3) в результате выгорания примесей и охлаждения происходит «вымораживание» (выпадание) кристаллов почти чистого железа;

4) застывший на дне ванны металл извлекают и обжимают под прессом. Вес криц достигает 2,5 т и более.

Таким образом оказывается разрешенным вопрос получения сварочного железа в тестообразном состоянии

механизированным способом в больших количествах и в виде крупных кусков.

Сталь в жидком состоянии получают методом продувки в конвертерах и путем плавки в пламенных, тигельных и электрических печах.

Производство стали в конвертерах

Увеличение потребности в металле и малая производительность пудлинговых печей заставляли искать способы ускорения процесса получения стали.

В 1856 г. англичанин Бессемер взял патент на получение стали из чугуна посредством продувания воздуха через расплавленный чугун.

Сущность бессемеровского процесса заключается в том, что струя воздуха, которой продувают через расплавленный чугун, окисляет входящие в него примеси. Происходящие при бессемеровании чугуна окислительные реакции сопровождаются выделением столь значительного количества тепла, что чугун не только не охлаждается, но его температура поднимается выше температуры плавления стали, и последняя получается в жидком состоянии. Наибольшее количество тепла выделяется при окислении кремния; поэтому чугун для бессемерования должен содержать достаточное количество кремния (больше 1%).

Бессемеровский конвертер - аппарат для получения стали бессемеровским процессом - представляет собой вращающийся сосуд грушевидной формы (фиг. 15.)

Кожух конвертера сделан из железа толщиной от 10 до 30 мм, а внутренняя полость выложена динасовым кирпичом, содержащим 93-97% Si0. 2 . Толщина огнеупорной футеровки около 300 мм. Воздух вдувают через отверстия 1, сделанные в днище конвертера; снизу воздушные отверстия входят в коробку. Газообразные продукты процесса удаляют через горловину конвертера 2; через нее же вливают в конвертер чугун и выливают готовый продукт.

Полезная емкость конвертера достигает 50 т. Внутренний диаметр конвертера d подсчитывают по формуле

где Т - полезная емкость конвертера в т.

Высоту рабочего пространства (от днища до центра горловины) берут от 1,75 до 2d. Число отверстий в днище достигает 300; диаметр отверстий 10-20 мм.

Количество воздуха, продуваемого через конвертер, составляет от 300 до 360 м 3 на 1 т залитого в конвертер чугуна; давление дутья в бессемеровских конвертерах составляет обычно 2-2,5 am.

В сутки на конвертере средней емкости можно провести до 40 плавок.

На фиг. 16 показано положение бессемеровского конвертера при наполнении чугуном.

Перед продувкой конвертер приводят в положение, показанное на фиг. 16, и наполняют чугуном при температуре около 1300°. Слой металла не рекомендуют делать глубже 0,5 м.

Воздух начинают продувать, когда конвертер находится в наклонном положении; таким образом, непосредственно после пуска воздух только скользит над чугуном и вдувается лишь для предохранения воздушных каналов от закупоривания жидким чугуном. Затем конвертер приводят в рабочее положение, показанное на фиг. 15, и воздух начинает проходить через всю толщину залитого в конвертер чугуна.

В первый период применения бессемеровского процесса получаемый по этому способу продукт не всегда бывал хорошего качества.

Причиной этого было то обстоятельство, что процесс не основывался на химическом анализе и проводился без достаточно научных оснований.

Спустя некоторое время было замечено, что лучшие результаты получаются при переработке чугунов серых, т. е. содержащих много кремния.

Кроме того, в первый период применения бессемеровского способа опыт показал, что исключительно хороший продукт получается при плавке шведских чугунов, содержащих весьма мало серы и фосфора.

Наконец, было установлено, что на качество продукта в сильной степени и в положительную сторону влияет присадка в конце плавки чугуна, содержащего много марганца.

Таким образом, постепенно накопился опыт, в результате которого обеспечивалась возможность получения путем бессемерования вполне доброкачественного продукта.

Процесс переработки чугуна в бессемеровском конвертере распадается на три периода.

Первый период - период искр.

Искры появляются вследствие механического действия дутья на расплавленный чугун, капли которого увлекаются дутьем, одновременно окисляясь с поверхности. Углерод, вступая в реакцию с кислородом, сгорает, превращаясь в углекислый газ, и при этом взрывает каплю чугуна.

В этот период в конвертере проходят следующие реакции:

1) горение железа по уравнению

и растворение закиси железа в жидком металле;

2) выгорание кремния; кремний сгорает под действием кислорода воздуха, раскисляя железо; продукты окисления кремния не растворяются в металле и уходят в шлак; в этот период протекают следующие реакции:

3) выгорание марганца; марганец сгорает, образуя закись марганца, уходящую в шлак; протекают следующие реакции:

Все указанные выше реакции протекают с выделением тепла, вследствие чего в этот период плавки температура непрерывно повышается. Продолжительность первого периода 3-4 мин.

Второй период - период яркого пламени. В реакцию начинает вступать углерод. Углерод сгорает, образуя окись углерода и углекислый газ. Эти реакции выражаются уравнениями

продолжается также реакция

поэтому возникает взаимодействие углерода с закисью железа по реакции с поглощением тепла

Горение углерода сопровождается вырывающимся из горловины конвертера пламенем.

К концу выгорания углерода температура металла достигает 1600-1650°. Продолжительность второго периода 9- 16 мин.

Третий период. С уменьшением в составе чугуна углерода в результате усилившегося горения железа появляется бурый дым, представляющий собой пары окислов железа. Наличие бурого дыма показывает, что входящие в состав чугуна примеси почти исчезли и что кислород проходящего через конвертер воздуха соединяется с железом. Третий период самый короткий - продолжается около 1 мин. и может возникать лишь при продувке на очень мягкие марки стали.

Об изменении состава чугуна во время хода процесса можно судить на основании анализа проб, взятых из конвертера через определенные промежутки времени, но это сопряжено с повалкой конвертера и производится иногда лишь в исследовательских целях.

В случае нормального хода процесса и при определенном составе перерабатываемого чугуна об окончании процесса можно судить по времени продувки и по внешним признакам, например, по характеру пламени и дыма, выходящих из конвертера.

Характерен цвет шлака. При достаточном обезуглероживании стали (до 0,1% С) шлак бессемеровского процесса имеет бурую поверхность и оливковозеленый излом; желтая поверхность шлака, а в изломе светлозеленая, говорит о том, что металл еще недостаточно обезуглерожен.

О ходе процесса можно также судить наблюдая через спектроскоп характер пламени, вырывающегося из конвертера; по линиям спектра можно определить момент надлежащего обезуглероживания металла. В последнее время для контроля степени обезуглероживания по ходу процесса продувки применяют приборы, основанные на принципе фотоэлемента.

Чем больше нужно оставить в стали углерода, тем раньше прерывается второй период.

Продолжительность хорошо организованного процесса продувки составляет около 10-15-мин.

Сталь после продувки содержит некоторое количество закиси железа. Присутствие закиси железа влияет на механические качества стали отрицательно: сталь делается красноломкой, т. е. плохо обрабатывается в горячем состоянии.

Для удаления из раствора стали закиси железа к продутому металлу добавляют некоторое количество специального чугуна, содержащего значительное количество марганца (ферромарганец), а иногда, кроме этого, специальный сплав, с высоким содержанием кремния (ферросилиций). Эта операция называется раскислением.

Прибавление к расплавленной стали феромарганца вызывает реакцию

Полученная в результате этой реакции слабо растворимая в металле закись марганца переходит в шлак.

Тот же результат дает и прибавление ферросилиция:

Образовавшаяся кремнекислота SiO 2 переходит в шлак. Подобный же результат может дать и присадка алюминия:

Образовавшийся глинозем Аl 2 O 3 переходит в шлак.

Чем лучше раскислен металл, тем выше его механические качества.

На фиг. 17 дан пример изменения состава металла во время бессемерования; первоначальный состав чугуна-3,5% С, 1,60%Si, 0,5%Мn и 93,75% Fe, а в конце третьего периода- 0,3% С, 0,1%Si, менее 0,1%Мn, 99,5% Fe.

Расплавленная сталь способна поглощать газы. Наличие растворенных в металле газов СО, N 2 и Н 2 влияет отрицательно на механические качества металла.

Присадкой алюминия и кремния можно достигнуть получения совершенно беспузыристой стали. Хорошим раскислителем стали является титан, вводимый в сталь в виде сильно углеродистого ферротитана, содержащего около 15% титана. Металл, раскисленный титаном, обладает высокими механическими качествами.

Марганцевая присадка, кроме действия ее в качестве раскислителя, способствует также удалению серы. Происходящая при этом реакция выражается уравнением

Как было указано выше, MnS почти не растворяется в жидком металле и уходит в шлак.

Угар металла в процессе бессемерования достигает 7-12%.

Для получения нужного количества углерода в продукте процесс либо прекращается именно в тот момент, когда это количество получается в ванне вследствие выгорания углерода, либо обезуглероживание чугуна доводят до конца, а затем для получения нужного количества углерода в конвертер вводят соответствующее количество чугуна, и таким образом получают нужное содержание углерода в металле.

Последний способ сложнее, но зато надежнее, так как при быстром ходе процесса бессемерования трудно уловить надлежащий момент прекращения процесса.

В связи с особенностями химического состава перерабатываемого чугуна, температуры его заливки в конвертер и других условий исторически сложились различные типы процесса, известные под названием русского, шведского, английского, американского и немецкого.

Русский способ был впервые применен Д. К. Черновым и К. П. Поленовым. Этот способ дает возможность перерабатывать в сталь бессемеровским процессом малокремнистые чугуны. Сущность способа заключается в том, что недостаток кремния, являющегося горючим в ходе процесса, восполняется высоким перегревом чугуна перед заливкой его в конвертер.

Д. К. Чернов перегревал чугуны в вагранке, К. П. Поленов - в отражательной печи.

При бессемеровании фосфор не удаляется из чугуна, так как при наличии в бессемеровском шлаке свободного кремнезема SiO, пятиокись фосфора Р 2 O 5 не удержится в шлаке, так как фосфор, восстанавливаемый углеродом, кремнием, марганцем или железом, перейдет снова в металл.

Малое бессемерование. Особую разновидность конвертерного способа производства стали составляет так называемое малое бессемерование. Отличительной особенностью этого процесса является способ подвода дутья-не снизу, как в бессемеровских и томасовских конвертерах, а сбоку, на уровне поверхности раздела металл-шлак. При таком способе подвода дутья в полости конвертера над металлом имеется неиспользованный кислород, вследствие чего выделяющаяся из ванны СО сжигается в конвертере в С02 с выделением большого количества тепла. Поэтому при боковом дутье получается металл со значительно более высокой температурой, чем в конвертерах с нижним дутьем. Такой горячий металл особенно пригоден для производства стального фасонного литья; поэтому конвертеры с боковым дутьем получили применение главным образом в сталелитейных цехах машиностроительных заводов. По условиям производства в литейных цехах такие конвертеры строят обычно для переработки малых садок металла - от 0,5 до 3 т, откуда и название «малое бессемерование».

Томасирование. В 1878 г. англичанин Томас предложил для удаления фосфора делать в конвертере основную футеровку и вводить в конвертер перед заливкой чугуна известь. Измененный таким образом бессемеровский процесс получил распространение под именем томасовского.

Томасовский процесс в основных чертах подобен бессемеровскому. Конвертеры, работающие по способу Томаса, имеют больший объем, чем бессемеровские. Увеличение размера здесь вызывается необходимостью загрузки в конвертер извести; полезная вместимость томасовского конвертера достигает 60 т. Глубина ванны металла достигает 0,60 м. Внутренний диаметр определяется по формуле

где Т - вес садки в т; высота рабочего пространства составляет от 2 до- 2,25d; давление дутья - от 2 до 2,5 ат; количество дутья составляет от 300 до 400 м3 на 1 т заливаемого в конвертер чугуна.

Футеровка конвертера делается из обожженного доломита с добавкой безводной каменноугольной смолы.

При томасировании после выгорания из чугуна кремния, марганца и углерода удаление фосфора в шлак происходит в результате реакции окисления с образованием прочной фосфорно-известковой соли по уравнению

Хотя фосфор и окисляется в P 2 O 5 с самого начала продувки, однако не может удержаться в шлаке, так как известь находится еще в твердом неактивном состоянии, и из остающейся в свободном состоянии Р 2 O 5 фосфор восстанавливается углеродом по реакции P 2 O 5 + 5С = 2Р+ 5СО. Вводимая при томасировании в конвертер известь служит, таким образом, флюсом, связывающим Р 2 O 5 в прочное соединение (СаО) 4 P 2 O 5 , уходящее в шлак.

Количество фосфора может быть доведено до 0,04-0,05%.

Томасовским способом перерабатывают чугуны, получаемые из руд, богатых фосфором, например, керченских.

Нормальный томасовский чугун содержит около 3,5% С: 0,5% Si; 0,8-l,3%Mn; 1,6-2,0% Р и не более 0,08% S.

Томасовские чугуны вследствие наличия в них значительного количества фосфора отличаются жидкоплавкостью.

Более низкая температура плавления томасовского чугуна по сравнению с бессемеровским (около 1100° С) позволяет начинать его продувку при более низкой температуре - порядка 1200° С.

Перед началом процесса в конвертер вводят из бункера свежеобожженную известь, затем вливают чугун и пускают дутье.

Первый период (выгорание кремния и марганца) в томасовском процессе сходен с бессемеровским, но вследствие значительно меньшего содержания в томасовском чугуне кремния он короче.

Второй период (выгорание углерода) вследствие более низкой температуры процесса сопровождается менее ярким пламенем, чем при бессемеровании.

Окисление и ошлакование фосфора в третьем периоде поднимает температуру металла до степени, необходимой для разливки низкоуглеродистой стали- порядка 1600° С.

О готовности металла судят по появлению бурых паров окиси железа, вызываемых сильным горением железа.

Вследствие сильного влияния фосфора на структуру металла о содержании фосфора можно судить по характеру излома пробы: при низком содержании фосфора излом серый, волокнистый; при наличии значительного количества фосфора металл в изломе будет блестящим и крупнозернистым.

Перед введением в металл раскислителей сливают шлак. Если шлак не будет удален перед добавлением раскислителей, входящие в состав раскислителей углерод, кремний и марганец могут восстановить из шлака фосфор, и последний снова перейдет в металл. Даже небольшие количества шлака, оставшиеся после его сливания, взаимодействуя с раскислителями, заметно увеличивают содержание фосфора в металле.

Томасовские шлаки содержат около 22% Р205 и применяются в качестве удобрения. Процесс продувки при томасировании продолжается около 20 мин. Угар металла составляет 12-14%.

Применение кислородного дутья при конвертерном способе. Конвертерный способ дает сталь, содержащую значительное количество растворенных газов; наличие в конвертерной стали азота и водорода (до 0,03%) повышает

жесткость ее и уменьшает динамическую прочность.

Для получения стали кислым конвертерным способом необходимо иметь руды, которые давали бы чугун с содержанием фосфора не больше 0,05%. Наоборот, при основном способе, где горение фосфора является главным источником тепла, его содержание в чугуне не должно быть ниже 1,6%.

Поэтому, несмотря на то, что конвертерный способ требует по сравнению с мартеновским меньших капитальных затрат (приблизительно в 2,5 раза) и идет с меньшими затратами топлива (на весь цикл от руды до готовой стали), его применение сравнительно ограниченно.

Для расширения применения конвертерного способа необходимо: 1) найти способ переработки чугунов, содержащих фосфор в количествах, больших, чем допускается при кислом процессе, и меньших, чем требуется при основном;

2) понизить содержание газов в конвертерной стали.

Это, как показывает опыт, достигается обогащением подаваемого в конвертеры воздуха кислородом. Применение кислородного дутья, уменьшая общее содержание в газах азота и водорода, снижает содержание этих газов в конвертерной стали и, таким образом, повышает ее механические качества. Вследствие того что при кислородном дутье уменьшается общее количество газов, уменьшаются и потери тепла, уносимого газами (при обычном дутье эти потери достигают 25%). Это дает возможность перерабатывать томасовским способом чугун с содержанием фосфора, меньшим 1,6%. Однако при низких концентрациях P 2 O 5 шлак утрачивает свою кондиционность.

Применение дутья, обогащенного кислородом, сокращая время продувки, повышает производительность конвертеров.

Мартеновский процесс. С расширением области применения стали начали накапливаться запасы стального лома, и все настойчивее становился вопрос о способе его переплавки.

Конвертеры для этой цели неприменимы вследствие того, что они приспособлены для переработки лишь жидкого чугуна, а пудлинговые печи оказывались непригодными вследствие слишком низкой рабочей температуры. Задача была разрешена в 1865 г. французами Пьером и Эмилем Мартен, которые воспользовались этой цели регенераторной печью Сименса, применяемой в стекольном производстве.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то